This is the official implementation of SKVQ.
SKVQ achieves extremely low-bit quantization of KV Cache with minimal accuracy drop by leveraging the locality of the attention module.
-
Environment:
conda create -n skvq python==3.10 pip install -r requirements.txt # install cuda extension cd kernels && pip install -e .
-
Calibration
python calibration --model [MODEL]
-
Test
-
PPL:
python eval_ppl.py --model [MODEL]
-
needle test
# SKVQ python eval_needle.py \ --model_name llama2-7b-80k \ --quant k2-v2-w128-g128-reorder-pre_rope-clip-sink5 \ --ctx_len 32000 \ # To reproduce KIVI python eval_needle.py \ --model_name llama2-7b-80k \ --quant k2-v2-w128-g128-KIVI \ --ctx_len 32000 \
-
longbench
# SKVQ python eval_longbench.py \ --model_name llama3-70b-instruct \ --quant k2-v2-g128-w128-reorder-pre_rope-clip-sink5-fp8 # To reproduce KIVI python eval_longbench.py \ --model_name llama3-70b-instruct \ --quant k2-v2-g128-w128-KIVI
-
- The results reported in the paper were obtained using fake quantization. We provide a naive fake quant cuda kernel to accelerate the experiment.
- The current dequantization and gemv kernel is naive and inefficient ! We will release a much more efficient fused kernel soon.
- We currently hard code group clipping into the evaluation script. To avoid overfitting, we now use unified clipping instead of group-wise clipping. You can tune it(according to our experience: between 0.91 and 0.97), which usually has a significant impact on PPL result.