forked from Tencent/ncnn
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
390 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,329 @@ | ||
// Tencent is pleased to support the open source community by making ncnn available. | ||
// | ||
// Copyright (C) 2017 THL A29 Limited, a Tencent company. All rights reserved. | ||
// | ||
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except | ||
// in compliance with the License. You may obtain a copy of the License at | ||
// | ||
// https://opensource.org/licenses/BSD-3-Clause | ||
// | ||
// Unless required by applicable law or agreed to in writing, software distributed | ||
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR | ||
// CONDITIONS OF ANY KIND, either express or implied. See the License for the | ||
// specific language governing permissions and limitations under the License. | ||
|
||
#include "softmaxv2.h" | ||
#include <float.h> | ||
#include <math.h> | ||
#include <algorithm> | ||
|
||
namespace ncnn { | ||
|
||
DEFINE_LAYER_CREATOR(SoftmaxV2) | ||
|
||
SoftmaxV2::SoftmaxV2() | ||
{ | ||
one_blob_only = true; | ||
support_inplace = false; | ||
} | ||
|
||
#if NCNN_STDIO | ||
#if NCNN_STRING | ||
int SoftmaxV2::load_param(FILE* paramfp) | ||
{ | ||
int nscan = fscanf(paramfp, "%d", &axis); | ||
if (nscan != 1) | ||
{ | ||
fprintf(stderr, "SoftmaxV2 load_param failed %d\n", nscan); | ||
return -1; | ||
} | ||
|
||
return 0; | ||
} | ||
#endif // NCNN_STRING | ||
int SoftmaxV2::load_param_bin(FILE* paramfp) | ||
{ | ||
fread(&axis, sizeof(int), 1, paramfp); | ||
|
||
return 0; | ||
} | ||
#endif // NCNN_STDIO | ||
|
||
int SoftmaxV2::load_param(const unsigned char*& mem) | ||
{ | ||
axis = *(int*)(mem); | ||
mem += 4; | ||
|
||
return 0; | ||
} | ||
|
||
int SoftmaxV2::forward(const Mat& bottom_blob, Mat& top_blob) const | ||
{ | ||
// value = exp( value - global max value ) | ||
// sum all value | ||
// value = value / sum | ||
|
||
if (axis == 0) | ||
{ | ||
int w = bottom_blob.w; | ||
int h = bottom_blob.h; | ||
int channels = bottom_blob.c; | ||
int size = w * h; | ||
|
||
top_blob.create(w, h, channels); | ||
if (top_blob.empty()) | ||
return -100; | ||
|
||
Mat max; | ||
max.create(w, h); | ||
if (max.empty()) | ||
return -100; | ||
max.fill(-FLT_MAX); | ||
for (int q=0; q<channels; q++) | ||
{ | ||
const float* ptr = bottom_blob.channel(q); | ||
float* maxptr = max; | ||
|
||
for (int i=0; i<size; i++) | ||
{ | ||
maxptr[i] = std::max(maxptr[i], ptr[i]); | ||
} | ||
} | ||
|
||
#pragma omp parallel for | ||
for (int q=0; q<channels; q++) | ||
{ | ||
const float* ptr = bottom_blob.channel(q); | ||
float* outptr = top_blob.channel(q); | ||
float* maxptr = max; | ||
|
||
for (int i=0; i<size; i++) | ||
{ | ||
outptr[i] = exp(ptr[i] - maxptr[i]); | ||
} | ||
} | ||
|
||
Mat sum; | ||
sum.create(w, h); | ||
if (sum.empty()) | ||
return -100; | ||
sum.fill(0.f); | ||
for (int q=0; q<channels; q++) | ||
{ | ||
const float* outptr = top_blob.channel(q); | ||
float* sumptr = sum; | ||
|
||
for (int i=0; i<size; i++) | ||
{ | ||
sumptr[i] += outptr[i]; | ||
} | ||
} | ||
|
||
#pragma omp parallel for | ||
for (int q=0; q<channels; q++) | ||
{ | ||
float* outptr = top_blob.channel(q); | ||
float* sumptr = sum; | ||
|
||
for (int i=0; i<size; i++) | ||
{ | ||
outptr[i] /= sumptr[i]; | ||
} | ||
} | ||
|
||
} | ||
else if (axis == 1) | ||
{ | ||
int w = bottom_blob.w; | ||
int h = bottom_blob.h; | ||
int channels = bottom_blob.c; | ||
int size = w * h; | ||
|
||
top_blob.create(w, h, channels); | ||
if (top_blob.empty()) | ||
return -100; | ||
|
||
Mat max; | ||
max.create(h, channels); | ||
if (max.empty()) | ||
return -100; | ||
max.fill(-FLT_MAX); | ||
#pragma omp parallel for | ||
for (int q=0; q<channels; q++) | ||
{ | ||
const float* ptr = bottom_blob.channel(q); | ||
float* maxptr = max.row(q); | ||
|
||
for (int i=0; i<h; i++) | ||
{ | ||
float max = -FLT_MAX; | ||
for (int j=0; j<w; j++) | ||
{ | ||
max = std::max(max, ptr[j]); | ||
} | ||
|
||
maxptr[i] = max; | ||
ptr += w; | ||
} | ||
} | ||
|
||
#pragma omp parallel for | ||
for (int q=0; q<channels; q++) | ||
{ | ||
const float* ptr = bottom_blob.channel(q); | ||
float* outptr = top_blob.channel(q); | ||
float* maxptr = max.row(q); | ||
|
||
for (int i=0; i<h; i++) | ||
{ | ||
float max = maxptr[i]; | ||
for (int j=0; j<w; j++) | ||
{ | ||
outptr[j] = exp(ptr[j] - max); | ||
} | ||
|
||
ptr += w; | ||
outptr += w; | ||
} | ||
} | ||
|
||
Mat sum; | ||
sum.create(h, channels); | ||
if (sum.empty()) | ||
return -100; | ||
sum.fill(0.f); | ||
#pragma omp parallel for | ||
for (int q=0; q<channels; q++) | ||
{ | ||
const float* outptr = top_blob.channel(q); | ||
float* sumptr = sum.row(q); | ||
|
||
for (int i=0; i<h; i++) | ||
{ | ||
float sum = 0.f; | ||
for (int j=0; j<w; j++) | ||
{ | ||
sum += outptr[j]; | ||
} | ||
|
||
sumptr[i] = sum; | ||
outptr += w; | ||
} | ||
} | ||
|
||
#pragma omp parallel for | ||
for (int q=0; q<channels; q++) | ||
{ | ||
float* outptr = top_blob.channel(q); | ||
float* sumptr = sum.row(q); | ||
|
||
for (int i=0; i<h; i++) | ||
{ | ||
float sum = sumptr[i]; | ||
for (int j=0; j<w; j++) | ||
{ | ||
outptr[j] /= sum; | ||
} | ||
|
||
outptr += w; | ||
} | ||
} | ||
|
||
} | ||
else if (axis == 2) | ||
{ | ||
int w = bottom_blob.w; | ||
int h = bottom_blob.h; | ||
int channels = bottom_blob.c; | ||
int size = w * h; | ||
|
||
top_blob.create(w, h, channels); | ||
if (top_blob.empty()) | ||
return -100; | ||
|
||
Mat max; | ||
max.create(w, channels); | ||
if (max.empty()) | ||
return -100; | ||
max.fill(-FLT_MAX); | ||
#pragma omp parallel for | ||
for (int q=0; q<channels; q++) | ||
{ | ||
const float* ptr = bottom_blob.channel(q); | ||
float* maxptr = max.row(q); | ||
|
||
for (int i=0; i<h; i++) | ||
{ | ||
for (int j=0; j<w; j++) | ||
{ | ||
maxptr[j] = std::max(maxptr[j], ptr[j]); | ||
} | ||
|
||
ptr += w; | ||
} | ||
} | ||
|
||
#pragma omp parallel for | ||
for (int q=0; q<channels; q++) | ||
{ | ||
const float* ptr = bottom_blob.channel(q); | ||
float* outptr = top_blob.channel(q); | ||
float* maxptr = max.row(q); | ||
|
||
for (int i=0; i<h; i++) | ||
{ | ||
for (int j=0; j<w; j++) | ||
{ | ||
outptr[j] = exp(ptr[j] - maxptr[j]); | ||
} | ||
|
||
ptr += w; | ||
outptr += w; | ||
} | ||
} | ||
|
||
Mat sum; | ||
sum.create(w, channels); | ||
if (sum.empty()) | ||
return -100; | ||
sum.fill(0.f); | ||
#pragma omp parallel for | ||
for (int q=0; q<channels; q++) | ||
{ | ||
const float* outptr = top_blob.channel(q); | ||
float* sumptr = sum.row(q); | ||
|
||
for (int i=0; i<h; i++) | ||
{ | ||
for (int j=0; j<w; j++) | ||
{ | ||
sumptr[j] += outptr[j]; | ||
} | ||
|
||
outptr += w; | ||
} | ||
} | ||
|
||
#pragma omp parallel for | ||
for (int q=0; q<channels; q++) | ||
{ | ||
float* outptr = top_blob.channel(q); | ||
float* sumptr = sum.row(q); | ||
|
||
for (int i=0; i<h; i++) | ||
{ | ||
for (int j=0; j<w; j++) | ||
{ | ||
outptr[j] /= sumptr[j]; | ||
} | ||
|
||
outptr += w; | ||
} | ||
} | ||
|
||
} | ||
|
||
return 0; | ||
} | ||
|
||
} // namespace ncnn |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,43 @@ | ||
// Tencent is pleased to support the open source community by making ncnn available. | ||
// | ||
// Copyright (C) 2017 THL A29 Limited, a Tencent company. All rights reserved. | ||
// | ||
// Licensed under the BSD 3-Clause License (the "License"); you may not use this file except | ||
// in compliance with the License. You may obtain a copy of the License at | ||
// | ||
// https://opensource.org/licenses/BSD-3-Clause | ||
// | ||
// Unless required by applicable law or agreed to in writing, software distributed | ||
// under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR | ||
// CONDITIONS OF ANY KIND, either express or implied. See the License for the | ||
// specific language governing permissions and limitations under the License. | ||
|
||
#ifndef LAYER_SOFTMAXV2_H | ||
#define LAYER_SOFTMAXV2_H | ||
|
||
#include "layer.h" | ||
|
||
namespace ncnn { | ||
|
||
class SoftmaxV2 : public Layer | ||
{ | ||
public: | ||
SoftmaxV2(); | ||
|
||
#if NCNN_STDIO | ||
#if NCNN_STRING | ||
virtual int load_param(FILE* paramfp); | ||
#endif // NCNN_STRING | ||
virtual int load_param_bin(FILE* paramfp); | ||
#endif // NCNN_STDIO | ||
virtual int load_param(const unsigned char*& mem); | ||
|
||
virtual int forward(const Mat& bottom_blob, Mat& top_blob) const; | ||
|
||
public: | ||
int axis; | ||
}; | ||
|
||
} // namespace ncnn | ||
|
||
#endif // LAYER_SOFTMAXV2_H |
Oops, something went wrong.