forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add Julia sets to fractals (TheAlgorithms#4382)
* Added Julia sets drawing * Forgot the .py extension * Update julia_sets.py Added online sources for comparison. Added more examples of fractal Julia sets. Added all type hints. Only show one picture Silented RuntuleWarning's (there's no way of avoiding them and they're not an issue per se) * Added doctest example for "show_results" * Filtering Nan's and infinites * added 1 missing type hint * in iterate_function, convert to dtype=complex64 * RuntimeWarning (fine) filtering * Type hint, test for ignore_warnings function, typo in header * Update julia_sets.py Type of expected output value for iterate function int array -> complex array (throws an error on test) * Update julia_sets.py - More accurate type for tests cases in eval_quadratic_polynomial and iterate_function - added more characters for variables c & z in eval_quadratic_polynomial and eval_exponential to silent bot warnings * Function def formatting Blocked by black * Update julia_sets.py * Update fractals/julia_sets.py Co-authored-by: John Law <[email protected]> * Update fractals/julia_sets.py Co-authored-by: John Law <[email protected]> * Update fractals/julia_sets.py Co-authored-by: John Law <[email protected]> * Update fractals/julia_sets.py Co-authored-by: John Law <[email protected]> * Update fractals/julia_sets.py Co-authored-by: John Law <[email protected]> * Update fractals/julia_sets.py Co-authored-by: John Law <[email protected]> * Update fractals/julia_sets.py Co-authored-by: John Law <[email protected]> * added more doctests for eval_exponential * Update fractals/julia_sets.py Co-authored-by: John Law <[email protected]> Co-authored-by: John Law <[email protected]>
- Loading branch information
Showing
1 changed file
with
219 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,219 @@ | ||
"""Author Alexandre De Zotti | ||
Draws Julia sets of quadratic polynomials and exponential maps. | ||
More specifically, this iterates the function a fixed number of times | ||
then plots whether the absolute value of the last iterate is greater than | ||
a fixed threshold (named "escape radius"). For the exponential map this is not | ||
really an escape radius but rather a convenient way to approximate the Julia | ||
set with bounded orbits. | ||
The examples presented here are: | ||
- The Cauliflower Julia set, see e.g. | ||
https://en.wikipedia.org/wiki/File:Julia_z2%2B0,25.png | ||
- Other examples from https://en.wikipedia.org/wiki/Julia_set | ||
- An exponential map Julia set, ambiantly homeomorphic to the examples in | ||
http://www.math.univ-toulouse.fr/~cheritat/GalII/galery.html | ||
and | ||
https://ddd.uab.cat/pub/pubmat/02141493v43n1/02141493v43n1p27.pdf | ||
Remark: Some overflow runtime warnings are suppressed. This is because of the | ||
way the iteration loop is implemented, using numpy's efficient computations. | ||
Overflows and infinites are replaced after each step by a large number. | ||
""" | ||
|
||
import warnings | ||
from typing import Any, Callable | ||
|
||
import numpy | ||
from matplotlib import pyplot | ||
|
||
c_cauliflower = 0.25 + 0.0j | ||
c_polynomial_1 = -0.4 + 0.6j | ||
c_polynomial_2 = -0.1 + 0.651j | ||
c_exponential = -2.0 | ||
nb_iterations = 56 | ||
window_size = 2.0 | ||
nb_pixels = 666 | ||
|
||
|
||
def eval_exponential(c_parameter: complex, z_values: numpy.ndarray) -> numpy.ndarray: | ||
""" | ||
Evaluate $e^z + c$. | ||
>>> eval_exponential(0, 0) | ||
1.0 | ||
>>> abs(eval_exponential(1, numpy.pi*1.j)) < 1e-15 | ||
True | ||
>>> abs(eval_exponential(1.j, 0)-1-1.j) < 1e-15 | ||
True | ||
""" | ||
return numpy.exp(z_values) + c_parameter | ||
|
||
|
||
def eval_quadratic_polynomial( | ||
c_parameter: complex, z_values: numpy.ndarray | ||
) -> numpy.ndarray: | ||
""" | ||
>>> eval_quadratic_polynomial(0, 2) | ||
4 | ||
>>> eval_quadratic_polynomial(-1, 1) | ||
0 | ||
>>> round(eval_quadratic_polynomial(1.j, 0).imag) | ||
1 | ||
>>> round(eval_quadratic_polynomial(1.j, 0).real) | ||
0 | ||
""" | ||
return z_values * z_values + c_parameter | ||
|
||
|
||
def prepare_grid(window_size: float, nb_pixels: int) -> numpy.ndarray: | ||
""" | ||
Create a grid of complex values of size nb_pixels*nb_pixels with real and | ||
imaginary parts ranging from -window_size to window_size (inclusive). | ||
Returns a numpy array. | ||
>>> prepare_grid(1,3) | ||
array([[-1.-1.j, -1.+0.j, -1.+1.j], | ||
[ 0.-1.j, 0.+0.j, 0.+1.j], | ||
[ 1.-1.j, 1.+0.j, 1.+1.j]]) | ||
""" | ||
x = numpy.linspace(-window_size, window_size, nb_pixels) | ||
x = x.reshape((nb_pixels, 1)) | ||
y = numpy.linspace(-window_size, window_size, nb_pixels) | ||
y = y.reshape((1, nb_pixels)) | ||
return x + 1.0j * y | ||
|
||
|
||
def iterate_function( | ||
eval_function: Callable[[Any, numpy.ndarray], numpy.ndarray], | ||
function_params: Any, | ||
nb_iterations: int, | ||
z_0: numpy.ndarray, | ||
infinity: float = None, | ||
) -> numpy.ndarray: | ||
""" | ||
Iterate the function "eval_function" exactly nb_iterations times. | ||
The first argument of the function is a parameter which is contained in | ||
function_params. The variable z_0 is an array that contains the initial | ||
values to iterate from. | ||
This function returns the final iterates. | ||
>>> iterate_function(eval_quadratic_polynomial, 0, 3, numpy.array([0,1,2])).shape | ||
(3,) | ||
>>> numpy.round(iterate_function(eval_quadratic_polynomial, | ||
... 0, | ||
... 3, | ||
... numpy.array([0,1,2]))[0]) | ||
0j | ||
>>> numpy.round(iterate_function(eval_quadratic_polynomial, | ||
... 0, | ||
... 3, | ||
... numpy.array([0,1,2]))[1]) | ||
(1+0j) | ||
>>> numpy.round(iterate_function(eval_quadratic_polynomial, | ||
... 0, | ||
... 3, | ||
... numpy.array([0,1,2]))[2]) | ||
(256+0j) | ||
""" | ||
|
||
z_n = z_0.astype("complex64") | ||
for i in range(nb_iterations): | ||
z_n = eval_function(function_params, z_n) | ||
if infinity is not None: | ||
numpy.nan_to_num(z_n, copy=False, nan=infinity) | ||
z_n[abs(z_n) == numpy.inf] = infinity | ||
return z_n | ||
|
||
|
||
def show_results( | ||
function_label: str, | ||
function_params: Any, | ||
escape_radius: float, | ||
z_final: numpy.ndarray, | ||
) -> None: | ||
""" | ||
Plots of whether the absolute value of z_final is greater than | ||
the value of escape_radius. Adds the function_label and function_params to | ||
the title. | ||
>>> show_results('80', 0, 1, numpy.array([[0,1,.5],[.4,2,1.1],[.2,1,1.3]])) | ||
""" | ||
|
||
abs_z_final = (abs(z_final)).transpose() | ||
abs_z_final[:, :] = abs_z_final[::-1, :] | ||
pyplot.matshow(abs_z_final < escape_radius) | ||
pyplot.title(f"Julia set of ${function_label}$, $c={function_params}$") | ||
pyplot.show() | ||
|
||
|
||
def ignore_overflow_warnings() -> None: | ||
""" | ||
Ignore some overflow and invalid value warnings. | ||
>>> ignore_overflow_warnings() | ||
""" | ||
warnings.filterwarnings( | ||
"ignore", category=RuntimeWarning, message="overflow encountered in multiply" | ||
) | ||
warnings.filterwarnings( | ||
"ignore", | ||
category=RuntimeWarning, | ||
message="invalid value encountered in multiply", | ||
) | ||
warnings.filterwarnings( | ||
"ignore", category=RuntimeWarning, message="overflow encountered in absolute" | ||
) | ||
warnings.filterwarnings( | ||
"ignore", category=RuntimeWarning, message="overflow encountered in exp" | ||
) | ||
|
||
|
||
if __name__ == "__main__": | ||
|
||
z_0 = prepare_grid(window_size, nb_pixels) | ||
|
||
ignore_overflow_warnings() # See file header for explanations | ||
|
||
nb_iterations = 24 | ||
escape_radius = 2 * abs(c_cauliflower) + 1 | ||
z_final = iterate_function( | ||
eval_quadratic_polynomial, | ||
c_cauliflower, | ||
nb_iterations, | ||
z_0, | ||
infinity=1.1 * escape_radius, | ||
) | ||
show_results("z^2+c", c_cauliflower, escape_radius, z_final) | ||
|
||
nb_iterations = 64 | ||
escape_radius = 2 * abs(c_polynomial_1) + 1 | ||
z_final = iterate_function( | ||
eval_quadratic_polynomial, | ||
c_polynomial_1, | ||
nb_iterations, | ||
z_0, | ||
infinity=1.1 * escape_radius, | ||
) | ||
show_results("z^2+c", c_polynomial_1, escape_radius, z_final) | ||
|
||
nb_iterations = 161 | ||
escape_radius = 2 * abs(c_polynomial_2) + 1 | ||
z_final = iterate_function( | ||
eval_quadratic_polynomial, | ||
c_polynomial_2, | ||
nb_iterations, | ||
z_0, | ||
infinity=1.1 * escape_radius, | ||
) | ||
show_results("z^2+c", c_polynomial_2, escape_radius, z_final) | ||
|
||
nb_iterations = 12 | ||
escape_radius = 10000.0 | ||
z_final = iterate_function( | ||
eval_exponential, | ||
c_exponential, | ||
nb_iterations, | ||
z_0 + 2, | ||
infinity=1.0e10, | ||
) | ||
show_results("e^z+c", c_exponential, escape_radius, z_final) |