Skip to content

Commit

Permalink
Browse files Browse the repository at this point in the history
* Fix mypy in TheAlgorithms#2684

* fix pre-commit
  • Loading branch information
poyea authored Nov 29, 2020
1 parent 0febbd3 commit 25164bb
Show file tree
Hide file tree
Showing 5 changed files with 34 additions and 22 deletions.
11 changes: 6 additions & 5 deletions backtracking/all_combinations.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,15 +3,16 @@
numbers out of 1 ... n. We use backtracking to solve this problem.
Time complexity: O(C(n,k)) which is O(n choose k) = O((n!/(k! * (n - k)!)))
"""
from typing import List


def generate_all_combinations(n: int, k: int) -> [[int]]:
def generate_all_combinations(n: int, k: int) -> List[List[int]]:
"""
>>> generate_all_combinations(n=4, k=2)
[[1, 2], [1, 3], [1, 4], [2, 3], [2, 4], [3, 4]]
"""

result = []
result: List[List[int]] = []
create_all_state(1, n, k, [], result)
return result

Expand All @@ -20,8 +21,8 @@ def create_all_state(
increment: int,
total_number: int,
level: int,
current_list: [int],
total_list: [int],
current_list: List[int],
total_list: List[List[int]],
) -> None:
if level == 0:
total_list.append(current_list[:])
Expand All @@ -33,7 +34,7 @@ def create_all_state(
current_list.pop()


def print_all_state(total_list: [int]) -> None:
def print_all_state(total_list: List[List[int]]) -> None:
for i in total_list:
print(*i)

Expand Down
14 changes: 9 additions & 5 deletions backtracking/all_permutations.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,14 +5,18 @@
Time complexity: O(n! * n),
where n denotes the length of the given sequence.
"""
from typing import List, Union


def generate_all_permutations(sequence: [int]) -> None:
def generate_all_permutations(sequence: List[Union[int, str]]) -> None:
create_state_space_tree(sequence, [], 0, [0 for i in range(len(sequence))])


def create_state_space_tree(
sequence: [int], current_sequence: [int], index: int, index_used: int
sequence: List[Union[int, str]],
current_sequence: List[Union[int, str]],
index: int,
index_used: List[int],
) -> None:
"""
Creates a state space tree to iterate through each branch using DFS.
Expand Down Expand Up @@ -40,8 +44,8 @@ def create_state_space_tree(
sequence = list(map(int, input().split()))
"""

sequence = [3, 1, 2, 4]
sequence: List[Union[int, str]] = [3, 1, 2, 4]
generate_all_permutations(sequence)

sequence = ["A", "B", "C"]
generate_all_permutations(sequence)
sequence_2: List[Union[int, str]] = ["A", "B", "C"]
generate_all_permutations(sequence_2)
10 changes: 6 additions & 4 deletions backtracking/n_queens.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,10 +7,12 @@
diagonal lines.
"""
from typing import List

solution = []


def isSafe(board: [[int]], row: int, column: int) -> bool:
def isSafe(board: List[List[int]], row: int, column: int) -> bool:
"""
This function returns a boolean value True if it is safe to place a queen there
considering the current state of the board.
Expand Down Expand Up @@ -38,7 +40,7 @@ def isSafe(board: [[int]], row: int, column: int) -> bool:
return True


def solve(board: [[int]], row: int) -> bool:
def solve(board: List[List[int]], row: int) -> bool:
"""
It creates a state space tree and calls the safe function until it receives a
False Boolean and terminates that branch and backtracks to the next
Expand All @@ -53,7 +55,7 @@ def solve(board: [[int]], row: int) -> bool:
solution.append(board)
printboard(board)
print()
return
return True
for i in range(len(board)):
"""
For every row it iterates through each column to check if it is feasible to
Expand All @@ -68,7 +70,7 @@ def solve(board: [[int]], row: int) -> bool:
return False


def printboard(board: [[int]]) -> None:
def printboard(board: List[List[int]]) -> None:
"""
Prints the boards that have a successful combination.
"""
Expand Down
8 changes: 6 additions & 2 deletions backtracking/rat_in_maze.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,7 @@
def solve_maze(maze: [[int]]) -> bool:
from typing import List


def solve_maze(maze: List[List[int]]) -> bool:
"""
This method solves the "rat in maze" problem.
In this problem we have some n by n matrix, a start point and an end point.
Expand Down Expand Up @@ -67,7 +70,7 @@ def solve_maze(maze: [[int]]) -> bool:
return solved


def run_maze(maze: [[int]], i: int, j: int, solutions: [[int]]) -> bool:
def run_maze(maze: List[List[int]], i: int, j: int, solutions: List[List[int]]) -> bool:
"""
This method is recursive starting from (i, j) and going in one of four directions:
up, down, left, right.
Expand Down Expand Up @@ -106,6 +109,7 @@ def run_maze(maze: [[int]], i: int, j: int, solutions: [[int]]) -> bool:

solutions[i][j] = 0
return False
return False


if __name__ == "__main__":
Expand Down
13 changes: 7 additions & 6 deletions backtracking/sum_of_subsets.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,23 +6,24 @@
Summation of the chosen numbers must be equal to given number M and one number
can be used only once.
"""
from typing import List


def generate_sum_of_subsets_soln(nums: [int], max_sum: [int]) -> [int]:
result = []
path = []
def generate_sum_of_subsets_soln(nums: List[int], max_sum: int) -> List[List[int]]:
result: List[List[int]] = []
path: List[int] = []
num_index = 0
remaining_nums_sum = sum(nums)
create_state_space_tree(nums, max_sum, num_index, path, result, remaining_nums_sum)
return result


def create_state_space_tree(
nums: [int],
nums: List[int],
max_sum: int,
num_index: int,
path: [int],
result: [int],
path: List[int],
result: List[List[int]],
remaining_nums_sum: int,
) -> None:
"""
Expand Down

0 comments on commit 25164bb

Please sign in to comment.