Skip to content

Commit

Permalink
Update breadth_first_search_2.py (TheAlgorithms#7765)
Browse files Browse the repository at this point in the history
* Cleanup the BFS

* Add both functions and timeit

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Add performace results as comment

* Update breadth_first_search_2.py

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Christian Clauss <[email protected]>
  • Loading branch information
3 people authored Oct 28, 2022
1 parent fe5819c commit 762afc0
Showing 1 changed file with 41 additions and 4 deletions.
45 changes: 41 additions & 4 deletions graphs/breadth_first_search_2.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,9 @@
"""
from __future__ import annotations

from collections import deque
from queue import Queue
from timeit import timeit

G = {
"A": ["B", "C"],
Expand All @@ -26,25 +28,60 @@
}


def breadth_first_search(graph: dict, start: str) -> set[str]:
def breadth_first_search(graph: dict, start: str) -> list[str]:
"""
>>> ''.join(sorted(breadth_first_search(G, 'A')))
Implementation of breadth first search using queue.Queue.
>>> ''.join(breadth_first_search(G, 'A'))
'ABCDEF'
"""
explored = {start}
result = [start]
queue: Queue = Queue()
queue.put(start)
while not queue.empty():
v = queue.get()
for w in graph[v]:
if w not in explored:
explored.add(w)
result.append(w)
queue.put(w)
return explored
return result


def breadth_first_search_with_deque(graph: dict, start: str) -> list[str]:
"""
Implementation of breadth first search using collection.queue.
>>> ''.join(breadth_first_search_with_deque(G, 'A'))
'ABCDEF'
"""
visited = {start}
result = [start]
queue = deque([start])
while queue:
v = queue.popleft()
for child in graph[v]:
if child not in visited:
visited.add(child)
result.append(child)
queue.append(child)
return result


def benchmark_function(name: str) -> None:
setup = f"from __main__ import G, {name}"
number = 10000
res = timeit(f"{name}(G, 'A')", setup=setup, number=number)
print(f"{name:<35} finished {number} runs in {res:.5f} seconds")


if __name__ == "__main__":
import doctest

doctest.testmod()
print(breadth_first_search(G, "A"))

benchmark_function("breadth_first_search")
benchmark_function("breadth_first_search_with_deque")
# breadth_first_search finished 10000 runs in 0.20999 seconds
# breadth_first_search_with_deque finished 10000 runs in 0.01421 seconds

0 comments on commit 762afc0

Please sign in to comment.