Skip to content

Commit

Permalink
Added Lstm example for stock predection (TheAlgorithms#1908)
Browse files Browse the repository at this point in the history
* Added Lstm example for stock predection

* Changes after review

* changes after build failed

* Add Kiera’s to requirements.txt

* requirements.txt: Add keras and tensorflow

* psf/black

Co-authored-by: Christian Clauss <[email protected]>
  • Loading branch information
jeffin07 and cclauss authored May 7, 2020
1 parent 4acc28b commit 8a8527f
Show file tree
Hide file tree
Showing 3 changed files with 1,317 additions and 1 deletion.
56 changes: 56 additions & 0 deletions machine_learning/lstm/lstm_prediction.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,56 @@
"""
Create a Long Short Term Memory (LSTM) network model
An LSTM is a type of Recurrent Neural Network (RNN) as discussed at:
* http://colah.github.io/posts/2015-08-Understanding-LSTMs
* https://en.wikipedia.org/wiki/Long_short-term_memory
"""

from keras.layers import Dense, LSTM
from keras.models import Sequential
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler


if __name__ == "__main__":
"""
First part of building a model is to get the data and prepare
it for our model. You can use any dataset for stock prediction
make sure you set the price column on line number 21. Here we
use a dataset which have the price on 3rd column.
"""
df = pd.read_csv("sample_data.csv", header=None)
len_data = df.shape[:1][0]
# If you're using some other dataset input the target column
actual_data = df.iloc[:, 1:2]
actual_data = actual_data.values.reshape(len_data, 1)
actual_data = MinMaxScaler().fit_transform(actual_data)
look_back = 10
forward_days = 5
periods = 20
division = len_data - periods * look_back
train_data = actual_data[:division]
test_data = actual_data[division - look_back :]
train_x, train_y = [], []
test_x, test_y = [], []

for i in range(0, len(train_data) - forward_days - look_back + 1):
train_x.append(train_data[i : i + look_back])
train_y.append(train_data[i + look_back : i + look_back + forward_days])
for i in range(0, len(test_data) - forward_days - look_back + 1):
test_x.append(test_data[i : i + look_back])
test_y.append(test_data[i + look_back : i + look_back + forward_days])
x_train = np.array(train_x)
x_test = np.array(test_x)
y_train = np.array([list(i.ravel()) for i in train_y])
y_test = np.array([list(i.ravel()) for i in test_y])

model = Sequential()
model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True))
model.add(LSTM(64, input_shape=(128, 1)))
model.add(Dense(forward_days))
model.compile(loss="mean_squared_error", optimizer="adam")
history = model.fit(
x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4
)
pred = model.predict(x_test)
Loading

0 comments on commit 8a8527f

Please sign in to comment.