forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Chinese Remainder Theorem | Diophantine Equation | Modular Division (T…
…heAlgorithms#1248) * Update .gitignore to remove __pycache__/ * added chinese_remainder_theorem * Added Diophantine_equation algorithm * Update Diophantine eqn & chinese remainder theorem * Update Diophantine eqn & chinese remainder theorem * added efficient modular division algorithm * added GCD function * update chinese_remainder_theorem | dipohantine eqn | modular_division * update chinese_remainder_theorem | dipohantine eqn | modular_division * added a new directory named blockchain & a files from data_structures/hashing/number_theory * added a new directory named blockchain & a files from data_structures/hashing/number_theory
- Loading branch information
1 parent
b1a769c
commit 9cc9f67
Showing
3 changed files
with
364 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,91 @@ | ||
# Chinese Remainder Theorem: | ||
# GCD ( Greatest Common Divisor ) or HCF ( Highest Common Factor ) | ||
|
||
# If GCD(a,b) = 1, then for any remainder ra modulo a and any remainder rb modulo b there exists integer n, | ||
# such that n = ra (mod a) and n = ra(mod b). If n1 and n2 are two such integers, then n1=n2(mod ab) | ||
|
||
# Algorithm : | ||
|
||
# 1. Use extended euclid algorithm to find x,y such that a*x + b*y = 1 | ||
# 2. Take n = ra*by + rb*ax | ||
|
||
|
||
# Extended Euclid | ||
def extended_euclid(a, b): | ||
""" | ||
>>> extended_euclid(10, 6) | ||
(-1, 2) | ||
>>> extended_euclid(7, 5) | ||
(-2, 3) | ||
""" | ||
if b == 0: | ||
return (1, 0) | ||
(x, y) = extended_euclid(b, a % b) | ||
k = a // b | ||
return (y, x - k * y) | ||
|
||
|
||
# Uses ExtendedEuclid to find inverses | ||
def chinese_remainder_theorem(n1, r1, n2, r2): | ||
""" | ||
>>> chinese_remainder_theorem(5,1,7,3) | ||
31 | ||
Explanation : 31 is the smallest number such that | ||
(i) When we divide it by 5, we get remainder 1 | ||
(ii) When we divide it by 7, we get remainder 3 | ||
>>> chinese_remainder_theorem(6,1,4,3) | ||
14 | ||
""" | ||
(x, y) = extended_euclid(n1, n2) | ||
m = n1 * n2 | ||
n = r2 * x * n1 + r1 * y * n2 | ||
return ((n % m + m) % m) | ||
|
||
|
||
# ----------SAME SOLUTION USING InvertModulo instead ExtendedEuclid---------------- | ||
|
||
# This function find the inverses of a i.e., a^(-1) | ||
def invert_modulo(a, n): | ||
""" | ||
>>> invert_modulo(2, 5) | ||
3 | ||
>>> invert_modulo(8,7) | ||
1 | ||
""" | ||
(b, x) = extended_euclid(a, n) | ||
if b < 0: | ||
b = (b % n + n) % n | ||
return b | ||
|
||
|
||
# Same a above using InvertingModulo | ||
def chinese_remainder_theorem2(n1, r1, n2, r2): | ||
""" | ||
>>> chinese_remainder_theorem2(5,1,7,3) | ||
31 | ||
>>> chinese_remainder_theorem2(6,1,4,3) | ||
14 | ||
""" | ||
x, y = invert_modulo(n1, n2), invert_modulo(n2, n1) | ||
m = n1 * n2 | ||
n = r2 * x * n1 + r1 * y * n2 | ||
return (n % m + m) % m | ||
|
||
|
||
# import testmod for testing our function | ||
from doctest import testmod | ||
|
||
if __name__ == '__main__': | ||
testmod(name='chinese_remainder_theorem', verbose=True) | ||
testmod(name='chinese_remainder_theorem2', verbose=True) | ||
testmod(name='invert_modulo', verbose=True) | ||
testmod(name='extended_euclid', verbose=True) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,124 @@ | ||
# Diophantine Equation : Given integers a,b,c ( at least one of a and b != 0), the diophantine equation | ||
# a*x + b*y = c has a solution (where x and y are integers) iff gcd(a,b) divides c. | ||
|
||
# GCD ( Greatest Common Divisor ) or HCF ( Highest Common Factor ) | ||
|
||
|
||
def diophantine(a, b, c): | ||
""" | ||
>>> diophantine(10,6,14) | ||
(-7.0, 14.0) | ||
>>> diophantine(391,299,-69) | ||
(9.0, -12.0) | ||
But above equation has one more solution i.e., x = -4, y = 5. | ||
That's why we need diophantine all solution function. | ||
""" | ||
|
||
assert c % greatest_common_divisor(a, b) == 0 # greatest_common_divisor(a,b) function implemented below | ||
(d, x, y) = extended_gcd(a, b) # extended_gcd(a,b) function implemented below | ||
r = c / d | ||
return (r * x, r * y) | ||
|
||
|
||
# Lemma : if n|ab and gcd(a,n) = 1, then n|b. | ||
|
||
# Finding All solutions of Diophantine Equations: | ||
|
||
# Theorem : Let gcd(a,b) = d, a = d*p, b = d*q. If (x0,y0) is a solution of Diophantine Equation a*x + b*y = c. | ||
# a*x0 + b*y0 = c, then all the solutions have the form a(x0 + t*q) + b(y0 - t*p) = c, where t is an arbitrary integer. | ||
|
||
# n is the number of solution you want, n = 2 by default | ||
|
||
def diophantine_all_soln(a, b, c, n=2): | ||
""" | ||
>>> diophantine_all_soln(10, 6, 14) | ||
-7.0 14.0 | ||
-4.0 9.0 | ||
>>> diophantine_all_soln(10, 6, 14, 4) | ||
-7.0 14.0 | ||
-4.0 9.0 | ||
-1.0 4.0 | ||
2.0 -1.0 | ||
>>> diophantine_all_soln(391, 299, -69, n = 4) | ||
9.0 -12.0 | ||
22.0 -29.0 | ||
35.0 -46.0 | ||
48.0 -63.0 | ||
""" | ||
(x0, y0) = diophantine(a, b, c) # Initial value | ||
d = greatest_common_divisor(a, b) | ||
p = a // d | ||
q = b // d | ||
|
||
for i in range(n): | ||
x = x0 + i * q | ||
y = y0 - i * p | ||
print(x, y) | ||
|
||
|
||
# Euclid's Lemma : d divides a and b, if and only if d divides a-b and b | ||
|
||
# Euclid's Algorithm | ||
|
||
def greatest_common_divisor(a, b): | ||
""" | ||
>>> greatest_common_divisor(7,5) | ||
1 | ||
Note : In number theory, two integers a and b are said to be relatively prime, mutually prime, or co-prime | ||
if the only positive integer (factor) that divides both of them is 1 i.e., gcd(a,b) = 1. | ||
>>> greatest_common_divisor(121, 11) | ||
11 | ||
""" | ||
if a < b: | ||
a, b = b, a | ||
|
||
while a % b != 0: | ||
a, b = b, a % b | ||
|
||
return b | ||
|
||
|
||
# Extended Euclid's Algorithm : If d divides a and b and d = a*x + b*y for integers x and y, then d = gcd(a,b) | ||
|
||
|
||
def extended_gcd(a, b): | ||
""" | ||
>>> extended_gcd(10, 6) | ||
(2, -1, 2) | ||
>>> extended_gcd(7, 5) | ||
(1, -2, 3) | ||
""" | ||
assert a >= 0 and b >= 0 | ||
|
||
if b == 0: | ||
d, x, y = a, 1, 0 | ||
else: | ||
(d, p, q) = extended_gcd(b, a % b) | ||
x = q | ||
y = p - q * (a // b) | ||
|
||
assert a % d == 0 and b % d == 0 | ||
assert d == a * x + b * y | ||
|
||
return (d, x, y) | ||
|
||
|
||
# import testmod for testing our function | ||
from doctest import testmod | ||
|
||
if __name__ == '__main__': | ||
testmod(name='diophantine', verbose=True) | ||
testmod(name='diophantine_all_soln', verbose=True) | ||
testmod(name='extended_gcd', verbose=True) | ||
testmod(name='greatest_common_divisor', verbose=True) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,149 @@ | ||
# Modular Division : | ||
# An efficient algorithm for dividing b by a modulo n. | ||
|
||
# GCD ( Greatest Common Divisor ) or HCF ( Highest Common Factor ) | ||
|
||
# Given three integers a, b, and n, such that gcd(a,n)=1 and n>1, the algorithm should return an integer x such that | ||
# 0≤x≤n−1, and b/a=x(modn) (that is, b=ax(modn)). | ||
|
||
# Theorem: | ||
# a has a multiplicative inverse modulo n iff gcd(a,n) = 1 | ||
|
||
|
||
# This find x = b*a^(-1) mod n | ||
# Uses ExtendedEuclid to find the inverse of a | ||
|
||
|
||
def modular_division(a, b, n): | ||
""" | ||
>>> modular_division(4,8,5) | ||
2 | ||
>>> modular_division(3,8,5) | ||
1 | ||
>>> modular_division(4, 11, 5) | ||
4 | ||
""" | ||
assert n > 1 and a > 0 and greatest_common_divisor(a, n) == 1 | ||
(d, t, s) = extended_gcd(n, a) # Implemented below | ||
x = (b * s) % n | ||
return x | ||
|
||
|
||
# This function find the inverses of a i.e., a^(-1) | ||
def invert_modulo(a, n): | ||
""" | ||
>>> invert_modulo(2, 5) | ||
3 | ||
>>> invert_modulo(8,7) | ||
1 | ||
""" | ||
(b, x) = extended_euclid(a, n) # Implemented below | ||
if b < 0: | ||
b = (b % n + n) % n | ||
return b | ||
|
||
|
||
# ------------------ Finding Modular division using invert_modulo ------------------- | ||
|
||
# This function used the above inversion of a to find x = (b*a^(-1))mod n | ||
def modular_division2(a, b, n): | ||
""" | ||
>>> modular_division2(4,8,5) | ||
2 | ||
>>> modular_division2(3,8,5) | ||
1 | ||
>>> modular_division2(4, 11, 5) | ||
4 | ||
""" | ||
s = invert_modulo(a, n) | ||
x = (b * s) % n | ||
return x | ||
|
||
|
||
# Extended Euclid's Algorithm : If d divides a and b and d = a*x + b*y for integers x and y, then d = gcd(a,b) | ||
|
||
def extended_gcd(a, b): | ||
""" | ||
>>> extended_gcd(10, 6) | ||
(2, -1, 2) | ||
>>> extended_gcd(7, 5) | ||
(1, -2, 3) | ||
** extended_gcd function is used when d = gcd(a,b) is required in output | ||
""" | ||
assert a >= 0 and b >= 0 | ||
|
||
if b == 0: | ||
d, x, y = a, 1, 0 | ||
else: | ||
(d, p, q) = extended_gcd(b, a % b) | ||
x = q | ||
y = p - q * (a // b) | ||
|
||
assert a % d == 0 and b % d == 0 | ||
assert d == a * x + b * y | ||
|
||
return (d, x, y) | ||
|
||
|
||
# Extended Euclid | ||
def extended_euclid(a, b): | ||
""" | ||
>>> extended_euclid(10, 6) | ||
(-1, 2) | ||
>>> extended_euclid(7, 5) | ||
(-2, 3) | ||
""" | ||
if b == 0: | ||
return (1, 0) | ||
(x, y) = extended_euclid(b, a % b) | ||
k = a // b | ||
return (y, x - k * y) | ||
|
||
|
||
# Euclid's Lemma : d divides a and b, if and only if d divides a-b and b | ||
# Euclid's Algorithm | ||
|
||
def greatest_common_divisor(a, b): | ||
""" | ||
>>> greatest_common_divisor(7,5) | ||
1 | ||
Note : In number theory, two integers a and b are said to be relatively prime, mutually prime, or co-prime | ||
if the only positive integer (factor) that divides both of them is 1 i.e., gcd(a,b) = 1. | ||
>>> greatest_common_divisor(121, 11) | ||
11 | ||
""" | ||
if a < b: | ||
a, b = b, a | ||
|
||
while a % b != 0: | ||
a, b = b, a % b | ||
|
||
return b | ||
|
||
|
||
# Import testmod for testing our function | ||
from doctest import testmod | ||
|
||
if __name__ == '__main__': | ||
testmod(name='modular_division', verbose=True) | ||
testmod(name='modular_division2', verbose=True) | ||
testmod(name='invert_modulo', verbose=True) | ||
testmod(name='extended_gcd', verbose=True) | ||
testmod(name='extended_euclid', verbose=True) | ||
testmod(name='greatest_common_divisor', verbose=True) |