Skip to content

Commit

Permalink
readme
Browse files Browse the repository at this point in the history
  • Loading branch information
hytseng0509 committed Aug 2, 2018
1 parent 1d5a288 commit 734ee49
Showing 1 changed file with 5 additions and 5 deletions.
10 changes: 5 additions & 5 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,7 @@ Please cite our paper if you find the code or dataset useful for your research.
- Pytorch 4.0 and torchvision (https://pytorch.org/)
- [TensorboardX](https://github.com/lanpa/tensorboard-pytorch)
- [Tensorflow](https://www.tensorflow.org/) (for tensorboard usage)
- We provide a Docker file for building the environment based on CUDA 9.0 and CuDNN 7.1.
- We provide a Docker file for building the environment based on CUDA 9.0, CuDNN 7.1 and Ubuntu 16.04.

### Install
- Clone this repo:
Expand All @@ -48,7 +48,7 @@ cd DRIT/src
## Datasets
- Download the dataset using the following script.
```
bash ./datasets/download_dataset.sh dataset_name
bash ../datasets/download_dataset.sh dataset_name
```
- Portrait: 6452 photography images from [CelebA dataset](http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html), 1811 painting images downloaded and cropped from [Wikiart](https://www.wikiart.org/).
- Cat2dog: 871 cat (birman) images, 1364 dog (husky, samoyed) images crawled and cropped from Google Images.
Expand All @@ -72,19 +72,19 @@ Results and saved models can be found at `../results/portrait`.
## Testing Example
- Download a pre-trained model (We will upload the latest models in a few days)
```
bash ./models/download_model.sh
bash ../models/download_model.sh
```
- Generate results with randomly sampled attributes
- Require folder `testA` (for a2b) or `testB` (for b2a) under dataroot
```
python3 test.py --dataroot ../datasets/yosemite --name yosemite_random --resume ../models/example.pth --a2b 0
python3 test.py --dataroot ../datasets/yosemite --name yosemite_random --resume ../models/example.pth
```
Diverse generated summer images can be found at `../outputs/yosemite_random`

- Generate results with attributes encoded from given images
- Require both folders `testA` and `testB` under dataroot
```
python3 test_transfer.py --dataroot ../datasets/yosemite --name yosemite_encoded --resume ../models/example.pth --a2b 0
python3 test_transfer.py --dataroot ../datasets/yosemite --name yosemite_encoded --resume ../models/example.pth
```
Diverse generated summer images can be found at `../outputs/yosemite_encoded`

Expand Down

0 comments on commit 734ee49

Please sign in to comment.