Skip to content

Commit

Permalink
Add convolution filter visualization example
Browse files Browse the repository at this point in the history
  • Loading branch information
fchollet committed Jan 29, 2016
1 parent 4341c62 commit 027a018
Show file tree
Hide file tree
Showing 2 changed files with 182 additions and 0 deletions.
181 changes: 181 additions & 0 deletions examples/conv_filter_visualization.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,181 @@
'''Visualization of the filters of VGG16, via gradient ascent in input space.
This script can run on CPU in a few minutes (with the TensorFlow backend).
Results example: http://i.imgur.com/4nj4KjN.jpg
'''
from __future__ import print_function
from scipy.misc import imsave
import numpy as np
import time
import os
import h5py

from keras.models import Sequential
from keras.layers import Convolution2D, ZeroPadding2D, MaxPooling2D
from keras import backend as K

# dimensions of the generated pictures for each filter.
img_width = 128
img_height = 128

# path to the model weights file.
weights_path = 'vgg16_weights.h5'

# the name of the layer we want to visualize (see model definition below)
filter_name = 'conv5_1'

# util function to convert a tensor into a valid image
def deprocess_image(x):
# normalize tensor: center on 0., ensure std is 0.1
x -= x.mean()
x /= (x.std() + 1e-5)
x *= 0.1

# clip to [0, 1]
x += 0.5
x = np.clip(x, 0, 1)

# convert to RGB array
x *= 255
x = x.transpose((1, 2, 0))
x = np.clip(x, 0, 255).astype('uint8')
return x

# this will contain our generated image
input_img = K.placeholder((1, 3, img_width, img_height))

# build the VGG16 network with our input_img as input
first_layer = ZeroPadding2D((1, 1), input_shape=(3, img_width, img_height))
first_layer.input = input_img

model = Sequential()
model.add(first_layer)
model.add(Convolution2D(64, 3, 3, activation='relu', name='conv1_1'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(64, 3, 3, activation='relu', name='conv1_2'))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))

model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(128, 3, 3, activation='relu', name='conv2_1'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(128, 3, 3, activation='relu', name='conv2_2'))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))

model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(256, 3, 3, activation='relu', name='conv3_1'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(256, 3, 3, activation='relu', name='conv3_2'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(256, 3, 3, activation='relu', name='conv3_3'))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))

model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu', name='conv4_1'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu', name='conv4_2'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu', name='conv4_3'))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))

model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu', name='conv5_1'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu', name='conv5_2'))
model.add(ZeroPadding2D((1, 1)))
model.add(Convolution2D(512, 3, 3, activation='relu', name='conv5_3'))
model.add(MaxPooling2D((2, 2), strides=(2, 2)))

# load the weights of the VGG16 networks
# (trained on ImageNet, won the ILSVRC competition in 2014)
# note: when there is a complete match between your model definition
# and your weight savefile, you can simply call model.load_weights(filename)
assert os.path.exists(weights_path), 'Model weights not found (see "weights_path" variable in script).'
f = h5py.File(weights_path)
for k in range(f.attrs['nb_layers']):
if k >= len(model.layers):
# we don't look at the last (fully-connected) layers in the savefile
break
g = f['layer_{}'.format(k)]
weights = [g['param_{}'.format(p)] for p in range(g.attrs['nb_params'])]
model.layers[k].set_weights(weights)
f.close()
print('Model loaded.')

# get the symbolic outputs of each "key" layer (we gave them unique names).
layer_dict = dict([(layer.name, layer) for layer in model.layers])


def normalize(x):
# utility function to normalize a tensor by its L2 norm
return x / (K.sqrt(K.mean(K.square(x))) + 1e-5)


kept_filters = []
for filter_index in range(0, 200):
# we only scan through the first 200 filters,
# but there are actually 512 of them
print('Processing filter %d' % filter_index)
start_time = time.time()

# we build a loss function that maximizes the activation
# of the nth filter of the layer considered
layer_output = layer_dict[filter_name].get_output()
loss = K.mean(layer_output[:, filter_index, :, :])

# we compute the gradient of the input picture wrt this loss
grads = K.gradients(loss, input_img)[0]

# normalization trick: we normalize the gradient
grads = normalize(grads)

# this function returns the loss and grads given the input picture
iterate = K.function([input_img], [loss, grads])

# step size for gradient ascent
step = 1.

# we start from a gray image with some random noise
input_img_data = np.random.random((1, 3, img_width, img_height)) * 20 + 128.

# we run gradient ascent for 12 steps
for i in range(12):
loss_value, grads_value = iterate([input_img_data])
input_img_data += grads_value * step

print('Current loss value:', loss_value)
if loss_value <= 0.:
# some filters get stuck to 0, we can skip them
break

# decode the resulting input image
if loss_value > 0:
img = deprocess_image(input_img_data[0])
kept_filters.append((img, loss_value))
end_time = time.time()
print('Filter %d processed in %ds' % (filter_index, end_time - start_time))

# we will stich the best 64 filters on a 8 x 8 grid.
n = 8

# the filters that have the highest loss are assumed to be better-looking.
# we will only keep the top 64 filters.
kept_filters.sort(key=lambda x: x[1], reverse=True)
kept_filters = kept_filters[:n * n]

# build a black picture with enough space for
# our 8 x 8 filters of size 128 x 128, with a 5px margin in between
margin = 5
width = n * img_width + (n - 1) * margin
height = n * img_height + (n - 1) * margin
stitched_filters = np.zeros((width, height, 3))

# fill the picture with our saved filters
for i in range(n):
for j in range(n):
img, loss = kept_filters[i * n + j]
stitched_filters[(img_width + margin) * i: (img_width + margin) * i + img_width,
(img_height + margin) * j: (img_height + margin) * j + img_height, :] = img

# save the result to disk
imsave('stitched_filters_%dx%d.png' % (n, n), stitched_filters)
1 change: 1 addition & 0 deletions examples/deep_dream.py
Original file line number Diff line number Diff line change
Expand Up @@ -121,6 +121,7 @@ def deprocess_image(x):
# (trained on ImageNet, won the ILSVRC competition in 2014)
# note: when there is a complete match between your model definition
# and your weight savefile, you can simply call model.load_weights(filename)
assert os.path.exists(weights_path), 'Model weights not found (see "weights_path" variable in script).'
f = h5py.File(weights_path)
for k in range(f.attrs['nb_layers']):
if k >= len(model.layers):
Expand Down

0 comments on commit 027a018

Please sign in to comment.