Skip to content

chen141225/kotlinpoet

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

KotlinPoet

KotlinPoet is a Kotlin and Java API for generating .kt source files.

Source file generation can be useful when doing things such as annotation processing or interacting with metadata files (e.g., database schemas, protocol formats). By generating code, you eliminate the need to write boilerplate while also keeping a single source of truth for the metadata.

Example

Here's a HelloWorld file:

class Greeter(val name: String) {
  fun greet() {
    println("""Hello, $name""")
  }
}

fun main(vararg args: String) {
  Greeter(args[0]).greet()
}

And this is the code to generate it with KotlinPoet:

val greeterClass = ClassName("", "Greeter")
val file = FileSpec.builder("", "HelloWorld")
    .addType(TypeSpec.classBuilder("Greeter")
        .primaryConstructor(FunSpec.constructorBuilder()
            .addParameter("name", String::class)
            .build())
        .addProperty(PropertySpec.builder("name", String::class)
            .initializer("name")
            .build())
        .addFunction(FunSpec.builder("greet")
            .addStatement("println(%P)", "Hello, \$name")
            .build())
        .build())
    .addFunction(FunSpec.builder("main")
        .addParameter("args", String::class, VARARG)
        .addStatement("%T(args[0]).greet()", greeterClass)
        .build())
    .build()

file.writeTo(System.out)

The KDoc catalogs the complete KotlinPoet API, which is inspired by JavaPoet.

Code & Control Flow

Most of KotlinPoet's API uses immutable Kotlin objects. There's also builders, method chaining and varargs to make the API friendly. KotlinPoet offers models for Kotlin files (FileSpec), classes, interfaces & objects (TypeSpec), type aliases (TypeAliasSpec), properties (PropertySpec), functions & constructors (FunSpec), parameters (ParameterSpec) and annotations (AnnotationSpec).

But the body of methods and constructors is not modeled. There's no expression class, no statement class or syntax tree nodes. Instead, KotlinPoet uses strings for code blocks, and you can take advantage of Kotlin's multiline strings to make this look nice:

val main = FunSpec.builder("main")
    .addCode("""
        |var total = 0
        |for (i in 0 until 10) {
        |    total += i
        |}
        |""".trimMargin())
    .build()

Which generates this:

fun main() {
    var total = 0
    for (i in 0 until 10) {
        total += i
    }
}

There are additional APIs to assist with newlines, braces and indentation:

val main = FunSpec.builder("main")
    .addStatement("var total = 0")
    .beginControlFlow("for (i in 0 until 10)")
    .addStatement("total += i")
    .endControlFlow()
    .build()

This example is lame because the generated code is constant! Suppose instead of just adding 0 to 10, we want to make the operation and range configurable. Here's a method that generates a method:

private fun computeRange(name: String, from: Int, to: Int, op: String): FunSpec {
  return FunSpec.builder(name)
      .returns(Int::class)
      .addStatement("var result = 1")
      .beginControlFlow("for (i in $from until $to)")
      .addStatement("result = result $op i")
      .endControlFlow()
      .addStatement("return result")
      .build()
}

And here's what we get when we call computeRange("multiply10to20", 10, 20, "*"):

fun multiply10to20(): kotlin.Int {
    var result = 1
    for (i in 10 until 20) {
        result = result * i
    }
    return result
}

Methods generating methods! And since KotlinPoet generates source instead of bytecode, you can read through it to make sure it's right.

%S for Strings

When emitting code that includes string literals, we can use %S to emit a string, complete with wrapping quotation marks and escaping. Here's a program that emits 3 methods, each of which returns its own name:

fun main(args: Array<String>) {
  val helloWorld = TypeSpec.classBuilder("HelloWorld")
      .addFunction(whatsMyNameYo("slimShady"))
      .addFunction(whatsMyNameYo("eminem"))
      .addFunction(whatsMyNameYo("marshallMathers"))
      .build()
  
  val kotlinFile = FileSpec.builder("com.example.helloworld", "HelloWorld")
      .addType(helloWorld)
      .build()
  
  kotlinFile.writeTo(System.out)
}

private fun whatsMyNameYo(name: String): FunSpec {
  return FunSpec.builder(name)
      .returns(String::class)
      .addStatement("return %S", name)
      .build()
}

In this case, using %S gives us quotation marks:

class HelloWorld {
    fun slimShady(): String = "slimShady"

    fun eminem(): String = "eminem"

    fun marshallMathers(): String = "marshallMathers"
}

%P for String Templates

%S also handles the escaping of dollar signs ($), to avoid inadvertent creation of string templates, which may fail to compile in generated code:

val stringWithADollar = "Your total is " + "$" + "50"
val funSpec = FunSpec.builder("printTotal")
    .returns(String::class)
    .addStatement("return %S", stringWithADollar)
    .build()

produces:

fun printTotal(): String = "Your total is ${'$'}50"

If you need to generate string templates, use %P, which doesn't escape dollars:

val amount = 50
val stringWithADollar = "Your total is " + "$" + "amount"
val funSpec = FunSpec.builder("printTotal")
    .returns(String::class)
    .addStatement("return %P", stringWithADollar)
    .build()

produces:

fun printTotal(): String = "Your total is $amount"

You can also use CodeBlocks as arguments to %P, which is handy when you need to reference importable types or members inside the string template:

val file = FileSpec.builder("com.example", "Digits")
    .addFunction(FunSpec.builder("print")
        .addParameter("digits", IntArray::class)
        .addStatement("println(%P)", buildCodeBlock {
          val contentToString = MemberName("kotlin.collections", "contentToString")
          add("These are the digits: \${digits.%M()}", contentToString)
        })
        .build())
    .build()
println(file)

The snippet above will produce the following output, handling the imports properly:

package com.example

import kotlin.IntArray
import kotlin.collections.contentToString

fun print(digits: IntArray) {
    println("""These are the digits: ${digits.contentToString()}""")
}

%T for Types

KotlinPoet has rich built-in support for types, including automatic generation of import statements. Just use %T to reference types:

val today = FunSpec.builder("today")
    .returns(Date::class)
    .addStatement("return %T()", Date::class)
    .build()

val helloWorld = TypeSpec.classBuilder("HelloWorld")
    .addFunction(today)
    .build()

val kotlinFile = FileSpec.builder("com.example.helloworld", "HelloWorld")
    .addType(helloWorld)
    .build()

kotlinFile.writeTo(System.out)

That generates the following .kt file, complete with the necessary import:

package com.example.helloworld

import java.util.Date

class HelloWorld {
    fun today(): Date = Date()
}

We passed Date::class to reference a class that just-so-happens to be available when we're generating code. This doesn't need to be the case. Here's a similar example, but this one references a class that doesn't exist (yet):

val hoverboard = ClassName("com.mattel", "Hoverboard")

val tomorrow = FunSpec.builder("tomorrow")
    .returns(hoverboard)
    .addStatement("return %T()", hoverboard)
    .build()

And that not-yet-existent class is imported as well:

package com.example.helloworld

import com.mattel.Hoverboard

class HelloWorld {
    fun tomorrow(): Hoverboard = Hoverboard()
}

The ClassName type is very important, and you'll need it frequently when you're using KotlinPoet. It can identify any declared class. Declared types are just the beginning of Kotlin's rich type system: we also have arrays, parameterized types, wildcard types, lambda types and type variables. KotlinPoet has classes for building each of these:

import com.squareup.kotlinpoet.ParameterizedTypeName.Companion.parameterizedBy

val hoverboard = ClassName("com.mattel", "Hoverboard")
val list = ClassName("kotlin.collections", "List")
val arrayList = ClassName("kotlin.collections", "ArrayList")
val listOfHoverboards = list.parameterizedBy(hoverboard)
val arrayListOfHoverboards = arrayList.parameterizedBy(hoverboard)

val thing = ClassName("com.misc", "Thing")
val array = ClassName("kotlin", "Array")
val producerArrayOfThings = array.parameterizedBy(WildcardTypeName.producerOf(thing))

val beyond = FunSpec.builder("beyond")
    .returns(listOfHoverboards)
    .addStatement("val result = %T()", arrayListOfHoverboards)
    .addStatement("result += %T()", hoverboard)
    .addStatement("result += %T()", hoverboard)
    .addStatement("result += %T()", hoverboard)
    .addStatement("return result")
    .build()

val printThings = FunSpec.builder("printThings")
    .addParameter("things", producerArrayOfThings)
    .addStatement("println(things)")
    .build()

KotlinPoet will decompose each type and import its components where possible.

package com.example.helloworld

import com.mattel.Hoverboard
import com.misc.Thing
import kotlin.Array
import kotlin.collections.ArrayList
import kotlin.collections.List

class HelloWorld {
    fun beyond(): List<Hoverboard> {
        val result = ArrayList<Hoverboard>()
        result += Hoverboard()
        result += Hoverboard()
        result += Hoverboard()
        return result
    }

    fun printThings(things: Array<out Thing>) {
        println(things)
    }
}

Nullable Types

KotlinPoet supports nullable types. To convert a TypeName into its nullable counterpart, use the copy() method with nullable parameter set to true:

val java = PropertySpec.builder("java", String::class.asTypeName().copy(nullable = true))
    .mutable()
    .addModifiers(KModifier.PRIVATE)
    .initializer("null")
    .build()

val helloWorld = TypeSpec.classBuilder("HelloWorld")
    .addProperty(java)
    .addProperty("kotlin", String::class, KModifier.PRIVATE)
    .build()

generates:

class HelloWorld {
    private var java: String? = null

    private val kotlin: String
}

%M for Members

Similar to types, KotlinPoet has a special placeholder for members (functions and properties), which comes handy when your code needs to access top-level members and members declared inside objects. Use %M to reference members, pass an instance of MemberName as the argument for the placeholder, and KotlinPoet will handle imports automatically:

val createTaco = MemberName("com.squareup.tacos", "createTaco")
val isVegan = MemberName("com.squareup.tacos", "isVegan")
val file = FileSpec.builder("com.squareup.example", "TacoTest")
    .addFunction(FunSpec.builder("main")
        .addStatement("val taco = %M()", createTaco)
        .addStatement("println(taco.%M)", isVegan)
        .build())
    .build()
println(file)

The code above generates the following file:

package com.squareup.example

import com.squareup.tacos.createTaco
import com.squareup.tacos.isVegan

fun main() {
    val taco = createTaco()
    println(taco.isVegan)
}

As you can see, it's also possible to use %M to reference extension functions and properties. You just need to make sure the member can be imported without simple name collisions, otherwise importing will fail and the code generator output will not pass compilation. There's a way to work around such cases though - use FileSpec.addAliasedImport() to create an alias for a clashing MemberName:

val createTaco = MemberName("com.squareup.tacos", "createTaco")
val createCake = MemberName("com.squareup.cakes", "createCake")
val isTacoVegan = MemberName("com.squareup.tacos", "isVegan")
val isCakeVegan = MemberName("com.squareup.cakes", "isVegan")
val file = FileSpec.builder("com.squareup.example", "Test")
    .addAliasedImport(isTacoVegan, "isTacoVegan")
    .addAliasedImport(isCakeVegan, "isCakeVegan")
    .addFunction(FunSpec.builder("main")
        .addStatement("val taco = %M()", createTaco)
        .addStatement("val cake = %M()", createCake)
        .addStatement("println(taco.%M)", isTacoVegan)
        .addStatement("println(cake.%M)", isCakeVegan)
        .build())
    .build()
println(file)

KotlinPoet will produce an aliased import for com.squareup.tacos2.isVegan:

package com.squareup.example

import com.squareup.cakes.createCake
import com.squareup.tacos.createTaco
import com.squareup.cakes.isVegan as isCakeVegan
import com.squareup.tacos.isVegan as isTacoVegan

fun main() {
    val taco = createTaco()
    val cake = createCake()
    println(taco.isTacoVegan)
    println(cake.isCakeVegan)
}

MemberName and operators

MemberName also supports operators, you can use MemberName(String, KOperator) or MemberName(ClassName, KOperator) to import and reference operators.

val taco = ClassName("com.squareup.tacos", "Taco")
val meat = ClassName("com.squareup.tacos.ingredient", "Meat")
val iterator = MemberName("com.squareup.tacos.internal", KOperator.ITERATOR)
val minusAssign = MemberName("com.squareup.tacos.internal", KOperator.MINUS_ASSIGN)
val file = FileSpec.builder("com.example", "Test")
    .addFunction(FunSpec.builder("makeTacoHealthy")
        .addParameter("taco", taco)
        .beginControlFlow("for (ingredient %M taco)", iterator)
        .addStatement("if (ingredient is %T) taco %M ingredient", meat, minusAssign)
        .endControlFlow()
        .addStatement("return taco")
        .build())
    .build()
println(file)

KotlinPoet will import the extension operator functions and emit the operator.

package com.example

import com.squareup.tacos.Taco
import com.squareup.tacos.ingredient.Meat
import com.squareup.tacos.internal.iterator
import com.squareup.tacos.internal.minusAssign

fun makeTacoHealthy(taco: Taco) {
  for (ingredient in taco) {
    if (ingredient is Meat) taco -= ingredient
  }
  return taco
}

%N for Names

Generated code is often self-referential. Use %N to refer to another generated declaration by its name. Here's a method that calls another:

fun byteToHex(b: Int): String {
  val result = CharArray(2)
  result[0] = hexDigit((b ushr 4) and 0xf)
  result[1] = hexDigit(b and 0xf)
  return String(result)
}

fun hexDigit(i: Int): Char {
  return (if (i < 10) i + '0'.toInt() else i - 10 + 'a'.toInt()).toChar()
}

When generating the code above, we pass the hexDigit() method as an argument to the byteToHex() method using %N:

val hexDigit = FunSpec.builder("hexDigit")
    .addParameter("i", Int::class)
    .returns(Char::class)
    .addStatement("return (if (i < 10) i + '0'.toInt() else i - 10 + 'a'.toInt()).toChar()")
    .build()

val byteToHex = FunSpec.builder("byteToHex")
    .addParameter("b", Int::class)
    .returns(String::class)
    .addStatement("val result = CharArray(2)")
    .addStatement("result[0] = %N((b ushr 4) and 0xf)", hexDigit)
    .addStatement("result[1] = %N(b and 0xf)", hexDigit)
    .addStatement("return String(result)")
    .build()

Another handy feature that %N provides is automatically escaping names that contain illegal identifier characters with double ticks. Suppose your code creates a MemberName with a Kotlin keyword as the simple name:

val taco = ClassName("com.squareup.tacos", "Taco")
val packager = ClassName("com.squareup.tacos", "TacoPackager")
val file = FileSpec.builder("com.example", "Test")
    .addFunction(FunSpec.builder("packageTacos")
        .addParameter("tacos", LIST.parameterizedBy(taco))
        .addParameter("packager", packager)
        .addStatement("packager.%N(tacos)", packager.member("package"))
        .build())
    .build()

%N will escape the name for you, ensuring that the output will pass compilation:

package com.example

import com.squareup.tacos.Taco
import com.squareup.tacos.TacoPackager
import kotlin.collections.List

fun packageTacos(tacos: List<Taco>, packager: TacoPackager) {
  packager.`package`(tacos)
}

%L for Literals

Although Kotlin's string templates usually work well in cases when you want to include literals into generated code, KotlinPoet offers additional syntax inspired-by but incompatible-with String.format(). It accepts %L to emit a literal value in the output. This works just like Formatter's %s:

private fun computeRange(name: String, from: Int, to: Int, op: String): FunSpec {
  return FunSpec.builder(name)
      .returns(Int::class)
      .addStatement("var result = 0")
      .beginControlFlow("for (i in %L until %L)", from, to)
      .addStatement("result = result %L i", op)
      .endControlFlow()
      .addStatement("return result")
      .build()
}

Literals are emitted directly to the output code with no escaping. Arguments for literals may be strings, primitives, and a few KotlinPoet types described below.

Code block format strings

Code blocks may specify the values for their placeholders in a few ways. Only one style may be used for each operation on a code block.

Relative Arguments

Pass an argument value for each placeholder in the format string to CodeBlock.add(). In each example, we generate code to say "I ate 3 tacos"

CodeBlock.builder().add("I ate %L %L", 3, "tacos")

Positional Arguments

Place an integer index (1-based) before the placeholder in the format string to specify which argument to use.

CodeBlock.builder().add("I ate %2L %1L", "tacos", 3)

Named Arguments

Use the syntax %argumentName:X where X is the format character and call CodeBlock.addNamed() with a map containing all argument keys in the format string. Argument names use characters in a-z, A-Z, 0-9, and _, and must start with a lowercase character.

val map = LinkedHashMap<String, Any>()
map += "food" to "tacos"
map += "count" to 3
CodeBlock.builder().addNamed("I ate %count:L %food:L", map)

Functions

All of the above functions have a code body. Use KModifier.ABSTRACT to get a function without any body. This is only legal if it is enclosed by an abstract class or an interface.

val flux = FunSpec.builder("flux")
    .addModifiers(KModifier.ABSTRACT, KModifier.PROTECTED)
    .build()

val helloWorld = TypeSpec.classBuilder("HelloWorld")
    .addModifiers(KModifier.ABSTRACT)
    .addFunction(flux)
    .build()

Which generates this:

abstract class HelloWorld {
    protected abstract fun flux()
}

The other modifiers work where permitted.

Methods also have parameters, varargs, KDoc, annotations, type variables, return type and receiver type for extension functions. All of these are configured with FunSpec.Builder.

Extension functions

Extension functions can be generated by specifying a receiver.

val square = FunSpec.builder("square")
    .receiver(Int::class)
    .returns(Int::class)
    .addStatement("var s = this * this")
    .addStatement("return s")
    .build()

Which outputs:

fun Int.square(): Int {
  val s = this * this
  return s
}

Single-expression functions

KotlinPoet can recognize single-expression functions and print them out properly. It treats each function with a body that starts with return as a single-expression function:

val abs = FunSpec.builder("abs")
    .addParameter("x", Int::class)
    .returns(Int::class)
    .addStatement("return if (x < 0) -x else x")
    .build()

Which outputs:

fun abs(x: Int): Int = if (x < 0) -x else x

Default function arguments

Consider the example below. Function argument b has a default value of 0 to avoid overloading this function.

fun add(a: Int, b: Int = 0) {
  print("a + b = ${ a + b }")
}

Use the defaultValue() builder function to declare default value for a function argument.

FunSpec.builder("add")
    .addParameter("a", Int::class)
    .addParameter(ParameterSpec.builder("b", Int::class)
        .defaultValue("%L", 0)
        .build())
    .addStatement("print(\"a + b = ${ a + b }\")")
    .build()

Spaces wrap by default!

In order to provide meaningful formatting, KotlinPoet would replace spaces, found in blocks of code, with new line symbols, in cases when the line of code exceeds the length limit. Let's take this function for example:

val funSpec = FunSpec.builder("foo")
    .addStatement("return (100..10000).map { number -> number * number }.map { number -> number.toString() }.also { string -> println(string) }")
    .build()

Depending on where it's found in the file, it may end up being printed out like this:

fun foo() = (100..10000).map { number -> number * number }.map { number -> number.toString() }.also 
{ string -> println(string) }

Unfortunately this code is broken: the compiler expects also and { to be on the same line. KotlinPoet is unable to understand the context of the expression and fix the formatting for you, but there's a trick you can use to declare a non-breaking space - use the · symbol where you would otherwise use a space. Let's apply this to our example:

val funSpec = FunSpec.builder("foo")
    .addStatement("return (100..10000).map·{ number -> number * number }.map·{ number -> number.toString() }.also·{ string -> println(string) }")
    .build()

This will now produce the following result:

fun foo() = (100..10000).map { number -> number * number }.map { number -> number.toString()
}.also { string -> println(string) }

The code is now correct and will compile properly. It still doesn't look perfect - you can play with replacing other spaces in the code block with · symbols to achieve better formatting.

Constructors

FunSpec is a slight misnomer; it can also be used for constructors:

val flux = FunSpec.constructorBuilder()
    .addParameter("greeting", String::class)
    .addStatement("this.%N = %N", "greeting", "greeting")
    .build()

val helloWorld = TypeSpec.classBuilder("HelloWorld")
    .addProperty("greeting", String::class, KModifier.PRIVATE)
    .addFunction(flux)
    .build()

Which generates this:

class HelloWorld {
    private val greeting: String

    constructor(greeting: String) {
        this.greeting = greeting
    }
}

For the most part, constructors work just like methods. When emitting code, KotlinPoet will place constructors before methods in the output file.

Often times you'll need to generate the primary constructor for a class:

val helloWorld = TypeSpec.classBuilder("HelloWorld")
    .primaryConstructor(flux)
    .addProperty("greeting", String::class, KModifier.PRIVATE)
    .build()

This code, however, generates the following:

class HelloWorld(greeting: String) {
    private val greeting: String
    init {
        this.greeting = greeting
    }
}

By default, KotlinPoet won't merge primary constructor parameters and properties, even if they share the same name. To achieve the effect, you have to tell KotlinPoet that the property is initialized via the constructor parameter:

val flux = FunSpec.constructorBuilder()
    .addParameter("greeting", String::class)
    .build()

val helloWorld = TypeSpec.classBuilder("HelloWorld")
    .primaryConstructor(flux)
    .addProperty(PropertySpec.builder("greeting", String::class)
        .initializer("greeting")
        .addModifiers(KModifier.PRIVATE)
        .build())
    .build()

Now we're getting the following output:

class HelloWorld(private val greeting: String)

Notice that KotlinPoet omits {} for classes with empty bodies.

Parameters

Declare parameters on methods and constructors with either ParameterSpec.builder() or FunSpec's convenient addParameter() API:

val android = ParameterSpec.builder("android", String::class)
    .defaultValue("\"pie\"")
    .build()

val welcomeOverlords = FunSpec.builder("welcomeOverlords")
    .addParameter(android)
    .addParameter("robot", String::class)
    .build()

The code above generates:

fun welcomeOverlords(android: String = "pie", robot: String) {
}

The extended Builder form is necessary when the parameter has annotations (such as @Inject).

Properties

Like parameters, properties can be created either with builders or by using convenient helper methods:

val android = PropertySpec.builder("android", String::class)
    .addModifiers(KModifier.PRIVATE)
    .build()

val helloWorld = TypeSpec.classBuilder("HelloWorld")
    .addProperty(android)
    .addProperty("robot", String::class, KModifier.PRIVATE)
    .build()

Which generates:

class HelloWorld {
    private val android: String

    private val robot: String
}

The extended Builder form is necessary when a field has KDoc, annotations, or a field initializer. Field initializers use the same String.format()-like syntax as the code blocks above:

val android = PropertySpec.builder("android", String::class)
    .addModifiers(KModifier.PRIVATE)
    .initializer("%S + %L", "Oreo v.", 8.1)
    .build()

Which generates:

private val android: String = "Oreo v." + 8.1

By default PropertySpec.Builder produces val properties. Use mutable() if you need a var:

val android = PropertySpec.builder("android", String::class)
    .mutable()
    .addModifiers(KModifier.PRIVATE)
    .initializer("%S + %L", "Oreo v.", 8.1)
    .build()

Inline properties

The way KotlinPoet models inline properties deserves special mention. The following snippet of code:

val android = PropertySpec.builder("android", String::class)
    .addModifiers(KModifier.INLINE)
    .build()

will produce an error:

java.lang.IllegalArgumentException: KotlinPoet doesn't allow setting the inline modifier on 
properties. You should mark either the getter, the setter, or both inline.

Indeed, a property marked with inline should have at least one accessor which will be inlined by the compiler. Let's add a getter to this property:

val android = PropertySpec.builder("android", String::class)
    .getter(FunSpec.getterBuilder()
        .addModifiers(KModifier.INLINE)
        .addStatement("return %S", "foo")
        .build())
    .build()

The result is the following:

val android: kotlin.String
    inline get() = "foo"

Now, what if we wanted to add a non-inline setter to the property above? We can do so without modifying any of the code we wrote previously:

val android = PropertySpec.builder("android", String::class)
    .getter(FunSpec.getterBuilder()
        .addModifiers(KModifier.INLINE)
        .addStatement("return %S", "foo")
        .build())
    .setter(FunSpec.setterBuilder()
        .addParameter("value", String::class)
        .build())
    .build()

We get the expected result:

val android: kotlin.String
    inline get() = "foo"
    set(value) {
    }

Finally, if we go back and add KModifier.INLINE to the setter, KotlinPoet can wrap it nicely and produce the following result:

inline val android: kotlin.String
    get() = "foo"
    set(value) {
    }

Removing the modifier from either the getter or the setter will unwrap the expression back.

If, on the other hand, KotlinPoet had allowed marking a property inline directly, the programmer would have had to manually add/remove the modifier whenever the state of the accessors changes in order to get correct and compilable output. We're solving this problem by making accessors the source of truth for the inline modifier.

Interfaces

KotlinPoet has no trouble with interfaces. Note that interface methods must always be ABSTRACT. The modifier is necessary when defining the interface:

val helloWorld = TypeSpec.interfaceBuilder("HelloWorld")
    .addProperty("buzz", String::class)
    .addFunction(FunSpec.builder("beep")
        .addModifiers(KModifier.ABSTRACT)
        .build())
    .build()

But these modifiers are omitted when the code is generated. These are the default so we don't need to include them for kotlinc's benefit!

interface HelloWorld {
    val buzz: String

    fun beep()
}

Kotlin 1.4 adds support for functional interfaces via fun interface syntax. To create this in KotlinPoet, use TypeSpec.funInterfaceBuilder().

val helloWorld = TypeSpec.funInterfaceBuilder("HelloWorld")
    .addFunction(FunSpec.builder("beep")
        .addModifiers(KModifier.ABSTRACT)
        .build())
    .build()

// Generates...
fun interface HelloWorld {
  fun beep()
}

Objects

KotlinPoet supports objects:

val helloWorld = TypeSpec.objectBuilder("HelloWorld")
    .addProperty(PropertySpec.builder("buzz", String::class)
        .initializer("%S", "buzz")
        .build())
    .addFunction(FunSpec.builder("beep")
        .addStatement("println(%S)", "Beep!")
        .build())
    .build()

Similarly, you can create companion objects and add them to classes using addType():

val companion = TypeSpec.companionObjectBuilder()
    .addProperty(PropertySpec.builder("buzz", String::class)
        .initializer("%S", "buzz")
        .build())
    .addFunction(FunSpec.builder("beep")
        .addStatement("println(%S)", "Beep!")
        .build())
    .build()

val helloWorld = TypeSpec.classBuilder("HelloWorld")
    .addType(companion)
    .build()

You can provide an optional name for a companion object.

Enums

Use enumBuilder to create the enum type, and addEnumConstant() for each value:

val helloWorld = TypeSpec.enumBuilder("Roshambo")
    .addEnumConstant("ROCK")
    .addEnumConstant("SCISSORS")
    .addEnumConstant("PAPER")
    .build()

To generate this:

enum class Roshambo {
    ROCK,

    SCISSORS,

    PAPER
}

Fancy enums are supported, where the enum values override methods or call a superclass constructor. Here's a comprehensive example:

val helloWorld = TypeSpec.enumBuilder("Roshambo")
    .primaryConstructor(FunSpec.constructorBuilder()
        .addParameter("handsign", String::class)
        .build())
    .addEnumConstant("ROCK", TypeSpec.anonymousClassBuilder()
        .addSuperclassConstructorParameter("%S", "fist")
        .addFunction(FunSpec.builder("toString")
            .addModifiers(KModifier.OVERRIDE)
            .addStatement("return %S", "avalanche!")
            .returns(String::class)
            .build())
        .build())
    .addEnumConstant("SCISSORS", TypeSpec.anonymousClassBuilder()
        .addSuperclassConstructorParameter("%S", "peace")
        .build())
    .addEnumConstant("PAPER", TypeSpec.anonymousClassBuilder()
        .addSuperclassConstructorParameter("%S", "flat")
        .build())
    .addProperty(PropertySpec.builder("handsign", String::class, KModifier.PRIVATE)
        .initializer("handsign")
        .build())
    .build()

Which generates this:

enum class Roshambo(private val handsign: String) {
    ROCK("fist") {
        override fun toString(): String = "avalanche!"
    },

    SCISSORS("peace"),

    PAPER("flat");
}

Anonymous Inner Classes

In the enum code, we used TypeSpec.anonymousClassBuilder(). Anonymous inner classes can also be used in code blocks. They are values that can be referenced with %L:

val comparator = TypeSpec.anonymousClassBuilder()
    .addSuperinterface(Comparator::class.parameterizedBy(String::class))
    .addFunction(FunSpec.builder("compare")
        .addModifiers(KModifier.OVERRIDE)
        .addParameter("a", String::class)
        .addParameter("b", String::class)
        .returns(Int::class)
        .addStatement("return %N.length - %N.length", "a", "b")
        .build())
    .build()

val helloWorld = TypeSpec.classBuilder("HelloWorld")
    .addFunction(FunSpec.builder("sortByLength")
        .addParameter("strings", List::class.parameterizedBy(String::class))
        .addStatement("%N.sortedWith(%L)", "strings", comparator)
        .build())
    .build()

This generates a method that contains a class that contains a method:

class HelloWorld {
    fun sortByLength(strings: List<String>) {
        strings.sortedWith(object : Comparator<String> {
            override fun compare(a: String, b: String): Int = a.length - b.length
        })
    }
}

One particularly tricky part of defining anonymous inner classes is the arguments to the superclass constructor. To pass them use TypeSpec.Builder's addSuperclassConstructorParameter() method.

Annotations

Simple annotations are easy:

val test = FunSpec.builder("test string equality")
    .addAnnotation(Test::class)
    .addStatement("assertThat(%1S).isEqualTo(%1S)", "foo")
    .build()

Which generates this function with an @Test annotation:

@Test
fun `test string equality`() {
    assertThat("foo").isEqualTo("foo")
}

Use AnnotationSpec.builder() to set properties on annotations:

val logRecord = FunSpec.builder("recordEvent")
    .addModifiers(KModifier.ABSTRACT)
    .addAnnotation(AnnotationSpec.builder(Headers::class)
        .addMember("accept = %S", "application/json; charset=utf-8")
        .addMember("userAgent = %S", "Square Cash")
        .build())
    .addParameter("logRecord", LogRecord::class)
    .returns(LogReceipt::class)
    .build()

Which generates this annotation with accept and userAgent properties:

@Headers(
        accept = "application/json; charset=utf-8",
        userAgent = "Square Cash"
)
abstract fun recordEvent(logRecord: LogRecord): LogReceipt

When you get fancy, annotation values can be annotations themselves. Use %L for embedded annotations:

val headerList = ClassName("", "HeaderList")
val header = ClassName("", "Header")
val logRecord = FunSpec.builder("recordEvent")
    .addModifiers(KModifier.ABSTRACT)
    .addAnnotation(AnnotationSpec.builder(headerList)
        .addMember(
            "[\n⇥%L,\n%L⇤\n]",
            AnnotationSpec.builder(header)
                .addMember("name = %S", "Accept")
                .addMember("value = %S", "application/json; charset=utf-8")
                .build(),
            AnnotationSpec.builder(header)
                .addMember("name = %S", "User-Agent")
                .addMember("value = %S", "Square Cash")
                .build())
        .build())
    .addParameter("logRecord", logRecordName)
    .returns(logReceipt)
    .build()

Which generates this:

@HeaderList([
    Header(name = "Accept", value = "application/json; charset=utf-8"),
    Header(name = "User-Agent", value = "Square Cash")
])
abstract fun recordEvent(logRecord: LogRecord): LogReceipt

KotlinPoet supports use-site targets for annotations:

val utils = FileSpec.builder("com.example", "Utils")
    .addAnnotation(AnnotationSpec.builder(JvmName::class)
        .useSiteTarget(UseSiteTarget.FILE)
        .build())
    .addFunction(FunSpec.builder("abs")
        .receiver(Int::class)
        .returns(Int::class)
        .addStatement("return if (this < 0) -this else this")
        .build())
    .build()

Will output this:

@file:JvmName

package com.example

import kotlin.Int
import kotlin.jvm.JvmName

fun Int.abs(): Int = if (this < 0) -this else this

Type Aliases

KotlinPoet provides API for creating Type Aliases, which supports simple class names, parameterized types and lambdas:

val fileTable = Map::class.asClassName()
    .parameterizedBy(TypeVariableName("K"), Set::class.parameterizedBy(File::class))
val predicate = LambdaTypeName.get(parameters = *arrayOf(TypeVariableName("T")),
    returnType = Boolean::class.asClassName())
val helloWorld = FileSpec.builder("com.example", "HelloWorld")
    .addTypeAlias(TypeAliasSpec.builder("Word", String::class).build())
    .addTypeAlias(TypeAliasSpec.builder("FileTable<K>", fileTable).build())
    .addTypeAlias(TypeAliasSpec.builder("Predicate<T>", predicate).build())
    .build()

Which generates the following:

package com.example

import java.io.File
import kotlin.Boolean
import kotlin.String
import kotlin.collections.Map
import kotlin.collections.Set

typealias Word = String

typealias FileTable<K> = Map<K, Set<File>>

typealias Predicate<T> = (T) -> Boolean

Callable References

Callable references to constructors, functions, and properties may be emitted via:

  • ClassName.constructorReference() for constructors
  • MemberName.reference() for functions and properties

For example,

val helloClass = ClassName("com.example.hello", "Hello")
val worldFunction: MemberName = helloClass.member("world")
val byeProperty: MemberName = helloClass.nestedClass("World").member("bye")

val factoriesFun = FunSpec.builder("factories")
    .addStatement("val hello = %L", helloClass.constructorReference())
    .addStatement("val world = %L", worldFunction.reference())
    .addStatement("val bye = %L", byeProperty.reference())
    .build()

FileSpec.builder("com.example", "HelloWorld")
    .addFunction(factoriesFun)
    .build()

would generate:

package com.example

import com.example.hello.Hello

fun factories() {
  val hello = ::Hello
  val world = Hello::world
  val bye = Hello.World::bye
}

Top-level classes and members with conflicting names may require aliased imports, as with member names.

Download

Download the latest .jar or depend via Maven:

<dependency>
  <groupId>com.squareup</groupId>
  <artifactId>kotlinpoet</artifactId>
  <version>1.6.0</version>
</dependency>

or Gradle:

compile 'com.squareup:kotlinpoet:1.6.0'

Snapshots of the development version are available in Sonatype's snapshots repository.

License

Copyright 2017 Square, Inc.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

About

A Kotlin API for generating .kt source files.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Kotlin 98.8%
  • Other 1.2%