#这个是由北京交通大学共享的内容,本人自己进行部署
AAAI 2020. Spatial-Temporal Synchronous Graph Convolutional Networks: A New Framework for Spatial-Temporal Network Data Forecasting
url: paper/AAAI2020-STSGCN.pdf
Docker is recommended.
*参照官网安装
https://docs.docker.com/engine/install/centos/
1.卸载之前的版本
yum remove docker \
docker-client \
docker-client-latest \
docker-common \
docker-latest \
docker-latest-logrotate \
docker-logrotate \
docker-engine
注意这里有的人会报错,是因为python版本问题,可以卸载python3 2.安装需要的yum
yum install -y yum-utils
3.安装一下使用国内镜像
yum-config-manager --add-repo http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo
4.安装docker镜像,中间需要点几下 y
yum install docker-ce docker-ce-cli containerd.io
步骤一
yum install kernel-devel gcc -y
步骤二,保证两个版本一样
ls /boot | grep vmlinu
rpm -aq | grep kernel-devel
步骤三,屏蔽系统自带的nouveau
lsmod | grep nouveau
如果什么都没有就直接跳过步骤三,如果有内容需要执行下面内容
修改dist-blacklist.conf文件
vim /lib/modprobe.d/dist-blacklist.conf
将nvidiafb注释掉: #blacklist nvidiafb 然后添加以下语句: blacklist nouveau options nouveau modeset=0
步骤四:重建initramfs image
mv /boot/initramfs-$(uname -r).img /boot/initramfs-$(uname -r).img.bak
dracut /boot/initramfs-$(uname -r).img $(uname -r)
步骤五:修改运行级别为文本模式
systemctl set-default multi-user.target
步骤六:重启
reboot
步骤七:需要到官网上面下载驱动 https://www.nvidia.cn/Download/index.aspx?lang=cn
步骤八:给安装包权限
chmod +x NVIDIA-Linux-x86_64-470.94.run
步骤九:执行安装包
./NVIDIA-Linux-x86_64-470.94.run
如果这里面报错,执行的时候需要添加--kernel-source-path
如果报此错:unable to load the kernel module 'nvidia.ko' .........
执行:./NVIDIA-XXXX.run --kernel-source-path=/usr/src/kernels/内核号 -k $(uname -r)
如果报此错: WARNING: You do not appear to have an NVIDIA GPU supported by the 430.34 NVIDIA Linux graph
加上:--add-this-kernel 参数
如果报此错: unable to find the kernel source tree for the currently running kernel.........
加上:--kernel-source-path=/usr/src/kernels/内核号(2+Tab键 自动出现)
./NVIDIA-Linux-x86_64-440.64.run --kernel-source-path=/usr/src/kernels/3.10.0-1062.18.1.el7.x86_64 -k $(uname -r)
- install docker(上面安装docker已经完成)
- install nvidia-docker
- build image using
cd docker && docker build -t stsgcn/mxnet_1.41_cu100 .
- download the data STSGCN_data.tar.gz with code:
p72z
- uncompress data file using
tar -zxvf data.tar.gz
- modify the term
ctx
inconfig/PEMS03/individual_GLU_mask_emb.json
to match your GPU devices - run code using
docker run -ti --rm --runtime=nvidia -v $PWD:/mxnet stsgcn/mxnet_1.41_cu100 python3 main.py --config config/PEMS03/individual_GLU_mask_emb.json
If you are using Microsoft OpenPAI, modify the configurations saved in the folder pai_jobs
to train STSGCNs on your clusters.
name | description |
---|---|
config | configurations of STSGCN |
docker | dockerfile |
models | core of STSGCN |
pai_job | Microsoft OpenPAI configurations |
paper | paper of STSGCN |
test | pytest files |
load_params.py | read parameters from local files |
main.py | code of training STSGCN |
pytest.ini | pytest configurations |
requirements.txt | python packages requirements |
utils.py | tools |