Skip to content

AAAI 2020. Spatial-Temporal Synchronous Graph Convolutional Networks: A New Framework for Spatial-Temporal Network Data Forecasting

Notifications You must be signed in to change notification settings

chenyuxuanjava/STSGCN

 
 

Repository files navigation

#这个是由北京交通大学共享的内容,本人自己进行部署

STSGCN

AAAI 2020. Spatial-Temporal Synchronous Graph Convolutional Networks: A New Framework for Spatial-Temporal Network Data Forecasting

url: paper/AAAI2020-STSGCN.pdf

Usage

本人在虚拟机上面驱动安装没有成功,不知道是否虚拟机上面不支持,希望有大佬能够给虚拟上面Linux安装驱动的教程

Docker is recommended.

安装docker

*参照官网安装

https://docs.docker.com/engine/install/centos/

1.卸载之前的版本

      yum remove docker \
      docker-client \
      docker-client-latest \
      docker-common \
      docker-latest \
      docker-latest-logrotate \
      docker-logrotate \
      docker-engine

注意这里有的人会报错,是因为python版本问题,可以卸载python3 2.安装需要的yum

yum install -y yum-utils

3.安装一下使用国内镜像

yum-config-manager --add-repo http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo

4.安装docker镜像,中间需要点几下 y

yum install docker-ce docker-ce-cli containerd.io

安装nvidia-docker,首先需要安装nvdia驱动

步骤一

yum install kernel-devel gcc -y

步骤二,保证两个版本一样

ls /boot | grep vmlinu
rpm -aq | grep kernel-devel

1

步骤三,屏蔽系统自带的nouveau

lsmod | grep nouveau

如果什么都没有就直接跳过步骤三,如果有内容需要执行下面内容

1

修改dist-blacklist.conf文件

vim /lib/modprobe.d/dist-blacklist.conf

将nvidiafb注释掉: #blacklist nvidiafb 然后添加以下语句: blacklist nouveau options nouveau modeset=0

步骤四:重建initramfs image

mv /boot/initramfs-$(uname -r).img /boot/initramfs-$(uname -r).img.bak
dracut /boot/initramfs-$(uname -r).img $(uname -r)

步骤五:修改运行级别为文本模式

systemctl set-default multi-user.target

步骤六:重启

reboot

步骤七:需要到官网上面下载驱动 https://www.nvidia.cn/Download/index.aspx?lang=cn

1

步骤八:给安装包权限

chmod +x NVIDIA-Linux-x86_64-470.94.run

步骤九:执行安装包

./NVIDIA-Linux-x86_64-470.94.run

如果这里面报错,执行的时候需要添加--kernel-source-path

如果报此错:unable to load the kernel module 'nvidia.ko' .........

执行:./NVIDIA-XXXX.run --kernel-source-path=/usr/src/kernels/内核号  -k $(uname -r)

如果报此错: WARNING: You do not appear to have an NVIDIA GPU supported by the 430.34 NVIDIA Linux graph

加上:--add-this-kernel 参数

如果报此错: unable to find the kernel source tree for the currently running kernel.........

加上:--kernel-source-path=/usr/src/kernels/内核号(2+Tab键  自动出现)
./NVIDIA-Linux-x86_64-440.64.run --kernel-source-path=/usr/src/kernels/3.10.0-1062.18.1.el7.x86_64 -k $(uname -r)
  1. install docker(上面安装docker已经完成)
  2. install nvidia-docker
  3. build image using cd docker && docker build -t stsgcn/mxnet_1.41_cu100 .
  4. download the data STSGCN_data.tar.gz with code: p72z
  5. uncompress data file using tar -zxvf data.tar.gz
  6. modify the term ctx in config/PEMS03/individual_GLU_mask_emb.json to match your GPU devices
  7. run code using docker run -ti --rm --runtime=nvidia -v $PWD:/mxnet stsgcn/mxnet_1.41_cu100 python3 main.py --config config/PEMS03/individual_GLU_mask_emb.json

If you are using Microsoft OpenPAI, modify the configurations saved in the folder pai_jobs to train STSGCNs on your clusters.

repo structure

name description
config configurations of STSGCN
docker dockerfile
models core of STSGCN
pai_job Microsoft OpenPAI configurations
paper paper of STSGCN
test pytest files
load_params.py read parameters from local files
main.py code of training STSGCN
pytest.ini pytest configurations
requirements.txt python packages requirements
utils.py tools

About

AAAI 2020. Spatial-Temporal Synchronous Graph Convolutional Networks: A New Framework for Spatial-Temporal Network Data Forecasting

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.3%
  • Dockerfile 0.7%