Skip to content

chico2121/bpe

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

A Body Part Embedding Model with Datasets for Measuring 2D Human Motion Similarity

PyTorch implementation of A Body Part Embedding Model with Datasets for Measuring 2D Human Motion Similarity, IEEE Access.

We propose a learning framework with datasets to generate embeddings for measuring motion similarity for each human body part. See project page for the details.

Getting Started

Installation

  • Clone this repo

    git clone https://github.com/chico2121/bpe.git
    cd bpe
  • Install dependencies

    pip install -r requirements.txt
  • Working directory is assumed to be bpe (or bpe-master). Make sure to export PYTHONPATH:

    export PYTHONPATH=$PYTHONPATH:/absolute-path-to/[bpe or bpe-master]

Data preparation

  • Download and place SARA dataset in bpe-datasets. Please follow the instructions to download and prepare the dataset.

  • Download and place NTU motion similarity annotations in bpe-datasets.

Trainining

  • Train the model on GPU:

    python train_bpe.py
      -g 0
      --data_dir <path_to>/SARA_released
      --use_footvel_loss
      --logdir <path_to_dir>
    

    Execute python train_bpe.py --help for parameters description:

    -data_dir : Path to the data

    —use_footvel_loss: To use foot velocity loss.

    -logdir: Path to logdir where tensorboard visualization and model parameters are saved

Inference

  • Measuring correlation score between predicted similarity and AMT annotations of NTU:

    python python bin/ntu_similarity.py
      --data_dir <path to>/SARA_released
      --model_path <path to directory with model checkpoints (e.g. exp-bpe/model/*.pth) >
      --ntu_dir <path to pose data of ntu (i.e. NTU_motion_sim_annotations/refined_skeleton) >
    

    Execute python bin/ntu_similarity.py --help for more options.

  • Inference code producing video output for motion similarity for a pair of videos:

    python python bin/inference_single_pair_visuals.py
      --data_dir <path to data dir>
      --model_path <path to model checkpoint>
      --video1 <path to video1's pose sequence>
      --video2 <path to video2's pose sequence>
      -h1 <video1's height>
      -h2 <video2's height>
      -w1 <video1's width>
      -w2 <video2's width>
      --use_flipped_motion
      --video_sampling_window_size <number of frames>
      --video_sampling_stride <stride in number of frames>
      --similarity_measurement_window_size <number of oversampled video sequences>
      --out_filename <filename>.mp4
      --thresh 0.4
    

    Execute python bin/inference_single_pair_visuals.py --help for parameters description:

    --data_dir : Path to the data (include meanpose, stdpose npy files)

    --model_path : Path to the model checkpoint

    -video1, -video2 : JSON path of the pose sequences of video 1 and video 2

    -h1, -h2 : Image height of video 1 and video 2

    -w1, -w2 : Image width of video 1 and video 2

    -use_flipped_motion: Using flipped body skeleton when measuring similarity

    --video_sampling_window_size : parameter for sliding window sampling

    --video_sampling_stride : stride of sliding window

    --similarity_measurement_window_size : number of sampled sequences used for similarity score averaging

    --out_filename : path and name of the output video file

    --thresh : threshold to visualize body parts where similarity score is above or below the thresh([-1, 1])

Citation

If you use this code for your research, please cite the paper:

@ARTICLE{9366759,
  author={J. {Park} and S. {Cho} and D. {Kim} and O. {Bailo} and H. {Park} and S. {Hong} and J. {Park}},
  journal={IEEE Access}, 
  title={A Body Part Embedding Model With Datasets for Measuring 2D Human Motion Similarity}, 
  year={2021},
  volume={9},
  number={},
  pages={36547-36558},
  doi={10.1109/ACCESS.2021.3063302}}

Acknowledgments

This code borrows heavily from 2D-Motion-Retargeting.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages