forked from HIT-SCIR/ltp
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
295 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,219 @@ | ||
/* | ||
* vi:ts=4:tw=78:shiftwidth=4:expandtab | ||
* vim600:fdm=marker | ||
* | ||
* lbfgstrainer.cpp - trainer for conditional ME with L-BFGS method | ||
* | ||
* this class utilizes the Fortran implementation of L-BFGS described in | ||
* | ||
* "Limited Memory BFGS Method for Large Scale Optimization" | ||
* by Jorge Nocedal | ||
* | ||
* Copyright (C) 2003 by Zhang Le <[email protected]> | ||
* Begin : 01-Jun-2003 | ||
* Last Change : 24-Dec-2004. | ||
* | ||
* This library is free software; you can redistribute it and/or | ||
* modify it under the terms of the GNU Lesser General Public | ||
* License as published by the Free Software Foundation; either | ||
* version 2.1 of the License, or (at your option) any later version. | ||
* | ||
* This library is distributed in the hope that it will be useful, | ||
* but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
* GNU General Public License for more details. | ||
* | ||
* You should have received a copy of the GNU Lesser General Public | ||
* License along with this program; if not, write to the Free Software | ||
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | ||
*/ | ||
|
||
#ifdef HAVE_CONFIG_H | ||
#include "config.h" | ||
#endif | ||
|
||
#include <cassert> | ||
#include <cfloat> | ||
#include <cmath> | ||
#include <limits> | ||
#include <algorithm> | ||
#include <boost/timer.hpp> | ||
#include <boost/scoped_array.hpp> | ||
#include "lbfgstrainer.hpp" | ||
#include "display.hpp" | ||
#include "finite.h" | ||
#include "lbfgs.h" | ||
|
||
namespace maxent{ | ||
using namespace std; | ||
|
||
void LBFGSTrainer::init_trainer() { | ||
assert(m_params->size() > 0); | ||
assert(m_es->size() > 0); | ||
|
||
m_observed_expects.reset(new double[m_n_theta]); | ||
std::fill(m_observed_expects.get(), m_observed_expects.get() + m_n_theta, 0.0); | ||
|
||
m_N = 0; | ||
// calculate observed feature expectations | ||
// a hash map to hold the value of feature <pred, outcome> pair occured in event list | ||
// which is the sum of active feature f_i(a,b) in the training set | ||
typedef hash_map <pair<size_t, size_t>, float, featid_hasher> FeatSumMap; | ||
FeatSumMap feat_sum; | ||
for (vector<Event>::const_iterator it = m_es->begin(); | ||
it != m_es->end(); ++it) { | ||
size_t len = it->context_size(); | ||
for (size_t i = 0; i < len; ++i) { | ||
feat_sum[make_pair(it->m_context[i].first,it->m_outcome)] += | ||
it->m_count * it->m_context[i].second; | ||
} | ||
m_N += it->m_count; | ||
} | ||
|
||
// Get the observed expectations of the features. Strictly speaking, | ||
// we should divide the counts by the number of Tokens, but because of | ||
// the way the model's expectations are approximated in the | ||
// implementation, this is cancelled out when we compute the next | ||
// iteration of a parameter, making the extra divisions wasteful. | ||
|
||
FeatSumMap::iterator it; | ||
for (size_t pid = 0; pid < m_params->size(); ++pid) { | ||
vector<pair<size_t, size_t> >& param = (*m_params)[pid]; | ||
for (size_t j = 0; j < param.size(); ++j) { | ||
it = feat_sum.find(make_pair(pid,param[j].first)); | ||
assert(it != feat_sum.end()); | ||
if (it == feat_sum.end()) | ||
throw runtime_error("broken training data: some <pid, oid> in params not found in training data"); | ||
|
||
m_observed_expects[param[j].second] = -(it->second); | ||
} | ||
} | ||
|
||
} | ||
|
||
// test accuracy of current model on heldout events | ||
double LBFGSTrainer::heldout_accuracy() const { | ||
size_t correct = 0; | ||
size_t total = 0; | ||
vector<double> q(m_n_outcomes); // q(y|x) | ||
for (vector<Event>::iterator it = m_heldout_es->begin(); | ||
it != m_heldout_es->end(); ++it) { | ||
total += it->m_count; | ||
size_t best_oid = eval(it->m_context,it->context_size(), q); | ||
if (best_oid == it->m_outcome) | ||
correct += it->m_count; | ||
} | ||
return double(correct)/total; | ||
} | ||
|
||
void LBFGSTrainer::train(size_t iter, double eps) { | ||
if (!m_params || !m_es) | ||
throw runtime_error("Can not train on an empty model"); | ||
|
||
init_trainer(); | ||
|
||
const double LOG_ZERO = log(DBL_MIN); | ||
vector<double> q(m_n_outcomes); // q(y|x) | ||
int n = m_n_theta; | ||
int m = 5; | ||
boost::scoped_array<double> grad(new double[n]); | ||
double* g = grad.get(); | ||
double* x = m_theta.get(); | ||
fill(x, x+n, 0.0); | ||
|
||
double f = 0.0; | ||
size_t correct; | ||
double heldout_acc = -1.0; | ||
boost::timer t; | ||
|
||
lbfgs_t* opt = lbfgs_create(n, m, eps); | ||
if (!opt) | ||
throw runtime_error("fail to initlize L-BFGS optimizer"); | ||
|
||
display(""); | ||
display("Starting L-BFGS iterations..."); | ||
display("Number of Predicates: %d", m_params->size()); | ||
display("Number of Outcomes: %d", m_n_outcomes); | ||
display("Number of Parameters: %d", n); | ||
display("Number of Corrections: %d", m); | ||
display("Tolerance: %E", eps); | ||
display("Gaussian Penalty: %s", (m_sigma2?"on":"off")); | ||
#if defined(NDEBUG) | ||
display("Optimized version"); | ||
#endif | ||
|
||
display("iter eval loglikelihood training accuracy heldout accuracy"); | ||
display("=================================================================="); | ||
|
||
for (;opt->niter < (int)iter;) { | ||
// calculate loglikehood and gradient | ||
correct = 0; | ||
f = 0.0; | ||
std::copy(m_observed_expects.get(), m_observed_expects.get() + n, g); | ||
|
||
for (vector<Event>::iterator it = m_es->begin(); | ||
it != m_es->end(); ++it) { | ||
size_t best_oid = eval(it->m_context,it->context_size(), q); | ||
if (best_oid == it->m_outcome) | ||
correct += it->m_count; | ||
for (size_t i = 0; i < it->context_size(); ++i) { | ||
size_t pid = it->m_context[i].first; | ||
float fval = it->m_context[i].second; | ||
vector<pair<size_t, size_t> >& param = (*m_params)[pid]; | ||
for (size_t j = 0; j < param.size(); ++j) { | ||
size_t oid = param[j].first; | ||
size_t fid = param[j].second; | ||
g[fid] += it->m_count * q[oid] * fval; | ||
} | ||
} | ||
|
||
assert(finite(q[it->m_outcome])); | ||
double t = log(q[it->m_outcome]); | ||
if (finite(t)) | ||
f -= it->m_count * t; | ||
else | ||
f -= it->m_count * LOG_ZERO; | ||
} | ||
|
||
if (m_sigma2) { // applying Gaussian penality | ||
for (size_t i = 0;i < m_n_theta; ++i) { | ||
double penality = x[i]/m_sigma2[i]; | ||
g[i] += penality; | ||
f += (penality * x[i]) / 2; | ||
} | ||
} | ||
|
||
if (m_heldout_es && m_heldout_es->size() > 0) | ||
heldout_acc = heldout_accuracy(); | ||
|
||
int iflag = lbfgs_run(opt, x, &f, g); | ||
|
||
if (iflag < 0) { | ||
lbfgs_destory(opt); | ||
throw runtime_error("lbfgs routine stops with an error"); | ||
} else if (iflag == 0) { | ||
display("Training terminats succesfully in %.2f seconds", t.elapsed()); | ||
break; | ||
} else { | ||
// continue evaluations | ||
double acc = correct/double(m_N); | ||
if (m_heldout_es && m_heldout_es->size() > 0) { | ||
display("%3d %3d\t%E\t %.3f%%\t %.3f%%" , opt->niter , | ||
opt->nfuns , (-f/m_N) , (acc*100) , (heldout_acc * 100)); | ||
} else { | ||
display("%3d %3d\t%E\t %.3f%%\t %s", opt->niter, opt->nfuns , | ||
(-f/m_N) , (acc*100) , "N/A"); | ||
} | ||
} | ||
} | ||
|
||
if (opt->niter >= (int)iter) | ||
display("Maximum numbers of %d iterations reached in %.2f seconds", iter | ||
, t.elapsed()); | ||
display("Highest log-likelihood: %E", (-f/m_N)); | ||
|
||
lbfgs_destory(opt); | ||
} | ||
|
||
} // namespace maxent | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,76 @@ | ||
/* | ||
* vi:ts=4:tw=78:shiftwidth=4:expandtab | ||
* vim600:fdm=marker | ||
* | ||
* lbfgstrainer.hpp - a conditional ME trainer using Limited Memory BFGS | ||
* algorithm | ||
* | ||
* Copyright (C) 2003 by Zhang Le <[email protected]> | ||
* Begin : 01-Jun-2003 | ||
* Last Change : 17-Nov-2004. | ||
* | ||
* This library is free software; you can redistribute it and/or | ||
* modify it under the terms of the GNU Lesser General Public | ||
* License as published by the Free Software Foundation; either | ||
* version 2.1 of the License, or (at your option) any later version. | ||
* | ||
* This library is distributed in the hope that it will be useful, | ||
* but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
* GNU General Public License for more details. | ||
* | ||
* You should have received a copy of the GNU Lesser General Public | ||
* License along with this program; if not, write to the Free Software | ||
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | ||
*/ | ||
|
||
#ifndef LBFGSTRAINER_H | ||
#define LBFGSTRAINER_H | ||
|
||
#ifdef HAVE_CONFIG_H | ||
#include "config.h" | ||
#endif | ||
|
||
#include "trainer.hpp" | ||
|
||
namespace maxent{ | ||
class LBFGSTrainer : public Trainer { | ||
public: | ||
void train(size_t iter = 100, double eps = 1E-05); | ||
// void save_param(const string& model, bool binary) const; | ||
|
||
private: | ||
// void save_param_txt(const string& model) const; | ||
void init_trainer(); | ||
double heldout_accuracy() const; | ||
|
||
#if !defined(_STLPORT_VERSION) && defined(_MSC_VER) && (_MSC_VER >= 1300) | ||
// for MSVC7's hash_map declaration | ||
class featid_hasher : public stdext::hash_compare<pair<size_t, size_t> > { | ||
public: | ||
size_t operator()(const pair<size_t, size_t>& p) const { | ||
return p.first + p.second; | ||
} | ||
|
||
bool operator()(const pair<size_t, size_t>& k1, | ||
const pair<size_t, size_t>& k2) { | ||
return k1 < k2; | ||
} | ||
}; | ||
#else | ||
// for hash_map of GCC & STLPORT | ||
struct featid_hasher { | ||
size_t operator()(const pair<size_t, size_t>& p) const { | ||
return p.first + p.second; | ||
} | ||
}; | ||
|
||
#endif | ||
|
||
shared_array<double> m_observed_expects; | ||
}; | ||
|
||
} // namespace maxent | ||
|
||
#endif /* ifndef LBFGSTRAINER_H */ | ||
|