forked from PaddlePaddle/PARL
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Showing
10 changed files
with
854 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,103 @@ | ||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import argparse | ||
import torch | ||
|
||
|
||
def get_args(): | ||
parser = argparse.ArgumentParser(description='RL') | ||
parser.add_argument( | ||
'--lr', type=float, default=3e-4, help='learning rate (default: 3e-4)') | ||
parser.add_argument( | ||
'--eps', | ||
type=float, | ||
default=1e-5, | ||
help='RMSprop optimizer epsilon (default: 1e-5)') | ||
parser.add_argument( | ||
'--gamma', | ||
type=float, | ||
default=0.99, | ||
help='discount factor for rewards (default: 0.99)') | ||
parser.add_argument( | ||
'--gae-lambda', | ||
type=float, | ||
default=0.95, | ||
help='gae lambda parameter (default: 0.95)') | ||
parser.add_argument( | ||
'--entropy-coef', | ||
type=float, | ||
default=0., | ||
help='entropy term coefficient (default: 0.)') | ||
parser.add_argument( | ||
'--value-loss-coef', | ||
type=float, | ||
default=0.5, | ||
help='value loss coefficient (default: 0.5)') | ||
parser.add_argument( | ||
'--max-grad-norm', | ||
type=float, | ||
default=0.5, | ||
help='max norm of gradients (default: 0.5)') | ||
parser.add_argument( | ||
'--seed', type=int, default=1, help='random seed (default: 1)') | ||
parser.add_argument( | ||
'--num-steps', | ||
type=int, | ||
default=2048, | ||
help='number of maximum forward steps in ppo (default: 2048)') | ||
parser.add_argument( | ||
'--ppo-epoch', | ||
type=int, | ||
default=10, | ||
help='number of ppo epochs (default: 10)') | ||
parser.add_argument( | ||
'--num-mini-batch', | ||
type=int, | ||
default=32, | ||
help='number of batches for ppo (default: 32)') | ||
parser.add_argument( | ||
'--clip-param', | ||
type=float, | ||
default=0.2, | ||
help='ppo clip parameter (default: 0.2)') | ||
parser.add_argument( | ||
'--log-interval', | ||
type=int, | ||
default=1, | ||
help='log interval, one log per n updates (default: 1)') | ||
parser.add_argument( | ||
'--eval-interval', | ||
type=int, | ||
default=10, | ||
help='eval interval, one eval per n updates (default: 10)') | ||
parser.add_argument( | ||
'--num-env-steps', | ||
type=int, | ||
default=10e5, | ||
help='number of environment steps to train (default: 10e5)') | ||
parser.add_argument( | ||
'--env-name', | ||
default='Hopper-v2', | ||
help='environment to train on (default: Hopper-v2)') | ||
parser.add_argument( | ||
'--use-linear-lr-decay', | ||
action='store_true', | ||
default=False, | ||
help='use a linear schedule on the learning rate') | ||
args = parser.parse_args() | ||
|
||
args.cuda = torch.cuda.is_available() | ||
|
||
return args |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,56 @@ | ||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import numpy as np | ||
import torch | ||
|
||
import utils | ||
from wrapper import make_env | ||
|
||
|
||
def evaluate(agent, ob_rms, env_name, seed, device): | ||
if seed != None: | ||
seed += 1 | ||
eval_envs = make_env(env_name, seed, None) | ||
vec_norm = utils.get_vec_normalize(eval_envs) | ||
if vec_norm is not None: | ||
vec_norm.eval() | ||
vec_norm.ob_rms = ob_rms | ||
|
||
eval_episode_rewards = [] | ||
|
||
obs = eval_envs.reset() | ||
eval_masks = torch.zeros(1, 1, device=device) | ||
|
||
while len(eval_episode_rewards) < 10: | ||
with torch.no_grad(): | ||
action = agent.predict(obs) | ||
|
||
# Obser reward and next obs | ||
obs, _, done, infos = eval_envs.step(action) | ||
|
||
eval_masks = torch.tensor( | ||
[[0.0] if done_ else [1.0] for done_ in done], | ||
dtype=torch.float32, | ||
device=device) | ||
|
||
for info in infos: | ||
if 'episode' in info.keys(): | ||
eval_episode_rewards.append(info['episode']['r']) | ||
|
||
eval_envs.close() | ||
|
||
print(" Evaluation using {} episodes: mean reward {:.5f}\n".format( | ||
len(eval_episode_rewards), np.mean(eval_episode_rewards))) | ||
return np.mean(eval_episode_rewards) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,78 @@ | ||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import parl | ||
import torch | ||
|
||
|
||
class MujocoAgent(parl.Agent): | ||
def __init__(self, algorithm, device): | ||
self.alg = algorithm | ||
self.device = device | ||
|
||
def predict(self, obs): | ||
obs = torch.from_numpy(obs).float().to(self.device) | ||
action = self.alg.predict(obs) | ||
return action.cpu().numpy() | ||
|
||
def sample(self, obs): | ||
obs = torch.from_numpy(obs).to(self.device) | ||
value, action, action_log_probs = self.alg.sample(obs) | ||
return value.cpu().numpy(), action.cpu().numpy(), \ | ||
action_log_probs.cpu().numpy() | ||
|
||
def learn(self, next_value, gamma, gae_lambda, ppo_epoch, num_mini_batch, | ||
rollouts): | ||
value_loss_epoch = 0 | ||
action_loss_epoch = 0 | ||
dist_entropy_epoch = 0 | ||
|
||
for e in range(ppo_epoch): | ||
data_generator = rollouts.sample_batch(next_value, gamma, | ||
gae_lambda, num_mini_batch) | ||
|
||
for sample in data_generator: | ||
obs_batch, actions_batch, \ | ||
value_preds_batch, return_batch, old_action_log_probs_batch, \ | ||
adv_targ = sample | ||
|
||
obs_batch = torch.from_numpy(obs_batch).to('cuda') | ||
actions_batch = torch.from_numpy(actions_batch).to('cuda').to( | ||
'cuda') | ||
value_preds_batch = torch.from_numpy(value_preds_batch).to( | ||
'cuda') | ||
return_batch = torch.from_numpy(return_batch).to('cuda') | ||
old_action_log_probs_batch = torch.from_numpy( | ||
old_action_log_probs_batch).to('cuda') | ||
adv_targ = torch.from_numpy(adv_targ).to('cuda') | ||
|
||
value_loss, action_loss, dist_entropy = self.alg.learn( | ||
obs_batch, actions_batch, value_preds_batch, return_batch, | ||
old_action_log_probs_batch, adv_targ) | ||
|
||
value_loss_epoch += value_loss | ||
action_loss_epoch += action_loss | ||
dist_entropy_epoch += dist_entropy | ||
|
||
num_updates = ppo_epoch * num_mini_batch | ||
|
||
value_loss_epoch /= num_updates | ||
action_loss_epoch /= num_updates | ||
dist_entropy_epoch /= num_updates | ||
|
||
return value_loss_epoch, action_loss_epoch, dist_entropy_epoch | ||
|
||
def value(self, obs): | ||
obs = torch.from_numpy(obs).to(self.device) | ||
return self.alg.value(obs).cpu().numpy() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,64 @@ | ||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import parl | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
from torch.distributions import Normal | ||
|
||
|
||
class MujocoModel(parl.Model): | ||
def __init__(self, obs_dim, act_dim): | ||
super(MujocoModel, self).__init__() | ||
self.actor = Actor(obs_dim, act_dim) | ||
self.critic = Critic(obs_dim) | ||
|
||
def policy(self, obs): | ||
return self.actor(obs) | ||
|
||
def value(self, obs): | ||
return self.critic(obs) | ||
|
||
|
||
class Actor(parl.Model): | ||
def __init__(self, obs_dim, act_dim): | ||
super(Actor, self).__init__() | ||
self.fc1 = nn.Linear(obs_dim, 64) | ||
self.fc2 = nn.Linear(64, 64) | ||
|
||
self.fc_mean = nn.Linear(64, act_dim) | ||
self.log_std = nn.Parameter(torch.zeros(act_dim)) | ||
|
||
def forward(self, obs): | ||
x = torch.tanh(self.fc1(obs)) | ||
x = torch.tanh(self.fc2(x)) | ||
|
||
mean = self.fc_mean(x) | ||
return mean, self.log_std | ||
|
||
|
||
class Critic(parl.Model): | ||
def __init__(self, obs_dim): | ||
super(Critic, self).__init__() | ||
self.fc1 = nn.Linear(obs_dim, 64) | ||
self.fc2 = nn.Linear(64, 64) | ||
self.fc3 = nn.Linear(64, 1) | ||
|
||
def forward(self, obs): | ||
x = torch.tanh(self.fc1(obs)) | ||
x = torch.tanh(self.fc2(x)) | ||
value = self.fc3(x) | ||
|
||
return value |
Oops, something went wrong.