Easily create data visualization of static or streaming data
pip install easycharts
# charts.py
from fastapi import FastAPI
from easycharts import ChartServer
server = FastAPI()
@server.on_event('startup')
async def setup():
server.charts = await ChartServer.create(
server,
charts_db="test"
)
await server.charts.create_dataset(
"test",
labels=['a', 'b', 'c', 'd'],
dataset=[1,2,3,4]
)
uvicorn --host 0.0.0.0 --port 0.0.0.0 charts:server
In a separate window, access the OpenAPI docs to demonstrate dynanimc updates to the graph
http://0.0.0.0:8220/docs
import datetime, psutil
import asyncio
from fastapi import FastAPI
from easycharts import ChartServer
from easyschedule import EasyScheduler
scheduler = EasyScheduler()
server = FastAPI()
every_minute = '* * * * *'
@server.on_event('startup')
async def setup():
asyncio.create_task(scheduler.start())
server.charts = await ChartServer.create(
server,
charts_db="charts_database",
chart_prefix = '/mycharts'
)
await server.charts.create_dataset(
"test",
labels=['a', 'b', 'c', 'd'],
dataset=[1,2,3,4]
)
# set initial sync time
label=datetime.datetime.now().isoformat()[11:19]
await server.charts.create_dataset(
'cpu',
labels=[label],
dataset=[psutil.cpu_percent()]
)
await server.charts.create_dataset(
'mem',
labels=[label],
dataset=[psutil.virtual_memory().percent]
)
@scheduler(schedule=every_minute)
async def resource_monitor():
time_now=datetime.datetime.now().isoformat()[11:19]
# updates CPU & MEM datasets with current time
await server.charts.update_dataset(
'cpu',
label=time_now,
data=psutil.cpu_percent()
)
await server.charts.update_dataset(
'mem',
label=time_now,
data=psutil.virtual_memory().percent
)