Skip to content

Commit

Permalink
add oaa test
Browse files Browse the repository at this point in the history
  • Loading branch information
JohnLangford committed Feb 2, 2013
1 parent df2f63c commit 295b1ef
Show file tree
Hide file tree
Showing 3 changed files with 41 additions and 12 deletions.
29 changes: 17 additions & 12 deletions test/RunTests
Original file line number Diff line number Diff line change
Expand Up @@ -627,63 +627,68 @@ __DATA__
train-sets/ref/cs_test.ldf.wap.stderr
train-sets/ref/cs_test.ldf.wap.predict
# Test 11: Error Correcting Tournament
# Test 11: one-against-all
{VW} -k --oaa 10 -c --passes 10 train-sets/multiclass
train-sets/ref/oaa.stdout
train-sets/ref/oaa.stderr
# Test 12: Error Correcting Tournament
{VW} -k --ect 10 --error 3 -c --passes 10 --invariant train-sets/multiclass
train-sets/ref/multiclass.stdout
train-sets/ref/multiclass.stderr
# Test 12: Run searn on wsj_small for 12 passes, 4 passes per policy, extra features
# Test 13: Run searn on wsj_small for 12 passes, 4 passes per policy, extra features
{VW} -k -c -d train-sets/wsj_small.dat.gz --passes 12 --invariant --searn_passes_per_policy 4 --searn_task sequence --searn 5 --searn_sequencetask_history 2 --searn_sequencetask_bigrams --searn_sequencetask_features 1 --quiet
train-sets/ref/searn_wsj.stdout
train-sets/ref/searn_wsj.stderr
# Test 13: Run searn (wap) on wsj_small for 2 passes, 1 pass per policy, extra features
# Test 14: Run searn (wap) on wsj_small for 2 passes, 1 pass per policy, extra features
{VW} -k -b 19 -c -d train-sets/wsj_small.dat.gz --passes 2 --invariant --searn_passes_per_policy 1 --searn_task sequence --searn 5 --wap 5 --searn_sequencetask_history 2 --searn_sequencetask_bigrams --searn_sequencetask_features 1 --quiet
train-sets/ref/searn_wsj2.dat.stdout
train-sets/ref/searn_wsj2.dat.stderr
# Test 14: LBFGS on zero derivative input
# Test 15: LBFGS on zero derivative input
{VW} -k -c -d train-sets/zero.dat --loss_function=squared -b 20 --bfgs --mem 7 --passes 5 --l2 1.0
train-sets/ref/zero.stdout
train-sets/ref/zero.stderr
# Test 15: LBFGS early termination
# Test 16: LBFGS early termination
{VW} -k -c -d train-sets/rcv1_small.dat --loss_function=logistic -b 20 --bfgs --mem 7 --passes 20 --termination 0.001 --l2 1.0
train-sets/ref/rcv1_small.stdout
train-sets/ref/rcv1_small.stderr
# Test 16: Run LDA with 100 topics on 1000 Wikipedia articles
# Test 17: Run LDA with 100 topics on 1000 Wikipedia articles
{LDA} -k --lda 100 --lda_alpha 0.01 --lda_rho 0.01 --lda_D 1000 -b 13 --minibatch 128 --invariant train-sets/wiki1K.dat
train-sets/ref/wiki1K.stdout
train-sets/ref/wiki1K.stderr
# Test 17: Run searn on seq_small for 12 passes, 4 passes per policy
# Test 18: Run searn on seq_small for 12 passes, 4 passes per policy
{VW} -k -c -d train-sets/seq_small --passes 12 --invariant --searn_passes_per_policy 4 --searn 4 --searn_task sequence --quiet
train-sets/ref/searn_small.stdout
train-sets/ref/searn_small.stderr
# Test 18: neural network 3-parity with 2 hidden units
# Test 19: neural network 3-parity with 2 hidden units
{VW} -k -c -d train-sets/3parity --hash all --passes 2000 -b 16 --nn 2 -l 10 --invariant -f models/0021.model --random_seed 11 --quiet
train-sets/ref/3parity.stdout
train-sets/ref/3parity.stderr
# Test 19: neural network 3-parity with 2 hidden units (predict)
# Test 20: neural network 3-parity with 2 hidden units (predict)
{VW} -d train-sets/3parity --hash all -t -i models/0021.model -p 0022.predict.tmp
pred-sets/ref/0022.stdout
pred-sets/ref/0022.stderr
pred-sets/ref/0022.predict
# Test 20: cubic features -- on a parity test case
# Test 21: cubic features -- on a parity test case
{VW} -k -c -f models/xxor.model train-sets/xxor.dat --cubic abc --passes 100
train-sets/ref/xxor.stdout
train-sets/ref/xxor.stderr
# Test 21: matrix factorization -- training
# Test 22: matrix factorization -- training
{VW} -k -d train-sets/ml100k_small_train -b 16 -q ui --rank 10 --l2 0.001 --learning_rate 0.025 --passes 2 --decay_learning_rate 0.97 --power_t 0 -f movielens.reg --cache_file movielens.cache --loss_function classic
train-sets/ref/ml100k_small.stdout
train-sets/ref/ml100k_small.stderr
# Test 22: matrix factorization -- testing
# Test 23: matrix factorization -- testing
{VW} -i movielens.reg -t -d test-sets/ml100k_small_test
test-sets/ref/ml100k_small.stdout
test-sets/ref/ml100k_small.stderr
24 changes: 24 additions & 0 deletions test/train-sets/ref/oaa.stderr
Original file line number Diff line number Diff line change
@@ -0,0 +1,24 @@
Num weight bits = 18
learning rate = 0.5
initial_t = 0
power_t = 0.5
decay_learning_rate = 1
creating cache_file = train-sets/multiclass.cache
Reading datafile = train-sets/multiclass
num sources = 1
average since example example current current current
loss last counter weight label predict features
0.666667 0.666667 3 3.0 3 1 2
0.833333 1.000000 6 6.0 6 1 2
0.818182 0.800000 11 11.0 1 1 2
0.636364 0.454545 22 22.0 2 2 2
0.318182 0.000000 44 44.0 4 4 2
0.160920 0.000000 87 87.0 7 7 2

finished run
number of examples = 100
weighted example sum = 100
weighted label sum = 0
average loss = 0.14
best constant = 0
total feature number = 200
Empty file added test/train-sets/ref/oaa.stdout
Empty file.

0 comments on commit 295b1ef

Please sign in to comment.