Skip to content

Commit

Permalink
add the original ResNet scripits
Browse files Browse the repository at this point in the history
  • Loading branch information
yuxiaoguo committed Sep 5, 2016
1 parent d0f6c8c commit d1b7d8c
Show file tree
Hide file tree
Showing 7 changed files with 4 additions and 47 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -9,15 +9,12 @@
|Training |Stochastic gradient descent with momentum.

## Details
The network configurations and experiment settings in this this folder resemble the ones in the original [ResNet paper](http://arxiv.org/abs/1512.03385) with few minor changes inspired by [this work](https://github.com/facebook/fb.resnet.torch).
The following table contains results as well as links to pre-trained models that can be used in various applications.
The network configurations and experiment settings in this this folder resemble the ones in the original [ResNet paper](http://arxiv.org/abs/1512.03385) strictly without any extra optimization.
The following table contains results.

| Network | Top-1 error | Top-5 error | Model
| ------------- | ----------- | ----------- | ----------
| ResNet-18 | 29.57 | 10.41 | [Download](https://www.cntk.ai/resnet/ResNet_18.model)
| ResNet-34 | 27.31 | 8.97 | [Download](https://www.cntk.ai/resnet/ResNet_34.model)
| ResNet-50 | 24.74 | 7.56 | [Download](https://www.cntk.ai/resnet/ResNet_50.model)
| ResNet-152 | 22.57 | 6.44 | [Download](https://www.cntk.ai/resnet/ResNet_152.model)
| ResNet-50 | 24.58 | 7.43 |

## Notes
This work is an implementation of ResNets in CNTK. If you are interested in the original implementation of ResNet, follow [this link](https://github.com/KaimingHe/deep-residual-networks).
Original file line number Diff line number Diff line change
Expand Up @@ -56,10 +56,6 @@ Train=[

reader=[
readerType="ImageReader"
# Map file which maps images to labels using the following format:
# <full path to image><tab><numerical label (0-based class id)>
# Example:
# C:\Data\ImageNet\2012\train\n01440764\n01440764_10026.JPEG<tab>0
file="$DataDir$/train_map.txt"
# Randomize images before every epoch. Possible values: None, Auto. Default: Auto.
randomize="Auto"
Expand All @@ -78,22 +74,6 @@ Train=[
# Crop scale ratio jitter type.
# Possible values: None, UniRatio, UniLength, UniArea. Default: UniRatio
jitterType="UniRatio"
# Interpolation to use when scaling image to width x height size.
# Possible values: nearest, linear, cubic, lanczos. Default: linear.
#interpolations="cubic"
# Aspect ratio jitter radius. Default is 0 (disabled).
#aspectRatioRadius=0:0.2
# Brightness, contrast and color jittering. Default is 0 (disabled).
# Using 0 in the first epoch so the network can process original images.
#brightnessRadius=0:0.2
#contrastRadius=0:0.2
#saturationRadius=0:0.4
# Intensity jittering: enabled if file is specified and intensityStdDev > 0.
# The file stores 1x3 vector (eigenvalues) and 3x3 matrix (eigenvectors) in OpenCV XML format.
#intensityFile="$ConfigDir$/ImageNet1K_intensity.xml"
# StdDev for intensity jittering. Start from the second epoch.
#intensityStdDev=0:0.1
# Mean subtraction: enabled if file is specified.
# The file stores mean values for each pixel in OpenCV matrix XML format.
meanFile="$ConfigDir$/ImageNet1K_mean.xml"
]
Expand All @@ -107,15 +87,11 @@ PBN=[
action="pbn"
modelPath="$ModelDir$/ResNet_50"
# Set minibatch size for testing.
minibatchSize=32
minibatchSize=256
iters=30

reader=[
readerType="ImageReader"
# Map file which maps images to labels using the following format:
# <full path to image><tab><numerical label (0-based class id)>
# Example:
# C:\Data\ImageNet\2012\train\n01440764\n01440764_10026.JPEG<tab>0
file="$DataDir$/train_map.txt"
# Randomize images before every epoch. Possible values: None, Auto. Default: Auto.
randomize="Auto"
Expand All @@ -134,22 +110,6 @@ PBN=[
# Crop scale ratio jitter type.
# Possible values: None, UniRatio, UniLength, UniArea. Default: UniRatio
jitterType="UniRatio"
# Interpolation to use when scaling image to width x height size.
# Possible values: nearest, linear, cubic, lanczos. Default: linear.
#interpolations="cubic"
# Aspect ratio jitter radius. Default is 0 (disabled).
#aspectRatioRadius=0:0.2
# Brightness, contrast and color jittering. Default is 0 (disabled).
# Using 0 in the first epoch so the network can process original images.
#brightnessRadius=0:0.2
#contrastRadius=0:0.2
#saturationRadius=0:0.4
# Intensity jittering: enabled if file is specified and intensityStdDev > 0.
# The file stores 1x3 vector (eigenvalues) and 3x3 matrix (eigenvectors) in OpenCV XML format.
#intensityFile="$ConfigDir$/ImageNet1K_intensity.xml"
# StdDev for intensity jittering. Start from the second epoch.
#intensityStdDev=0:0.1
# Mean subtraction: enabled if file is specified.
# The file stores mean values for each pixel in OpenCV matrix XML format.
meanFile="$ConfigDir$/ImageNet1K_mean.xml"
]
Expand Down

0 comments on commit d1b7d8c

Please sign in to comment.