Skip to content

conflow-dev/ConFlow

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ConFlow

中文 | English

ConFlow是一个支持迁移TEE安全计算到NNA(Neural Network Accelerators,神经网络加速器)的神经网络计算框架:

  • 安全计算迁移:可自动将线性算子以密文形式迁移到各类神经网络加速器上,例如GPU、NPU、TPU等,在保证数据以密文形式计算的同时,利用各类NNA的算力。

  • 前端模型结构编译:自动迁移的密文算子以线性拆分的形式确保安全性,通过前端模型描述语言的编译器,转化为框架支持的密态数据结构。

更新日志

📌 置顶

  • [2024.02] 我们更新了相关的文档及说明。
  • [2023.12] 我们开源了模型描述编译器和适配TensorFlow的框架实现,能够将传统计算的模型描述,编译为支持此密文计算的模型结构。
  • [2023.07] 我们提出了一种隐私保护机器学习框架,支持数据密态计算的同时只需增加少量的计算开销。

目录

ConFlow

ConFlow 是一个支持迁移TEE安全计算到NNA(Neural Network Accelerators,神经网络加速器)的神经网络计算框架,可自动将线性算子以密文形式迁移到各类神经网络加速器上,例如GPU、NPU、TPU等,在保证数据以密文形式计算的同时,利用各类NNA的算力提高性能;同时,为了减少开发者对此类密文网络结构的适配难度,该框架自带一个模型描述语言的编译器,能将TensorFlow的模型描述自动编译到此框架的密态模型结构上。

  • 🏆 隐私保护:线性算子是以密文形式在NNA上进行计算,算力提供方将无法访问到明文;而非线性算子运行在TEE内,算力提供方也无法访问到明文。整个流程可以保护隐私数据被泄露。

  • 🔥 性能表现:相比较普通的TEE框架,本项目可以支持NNA的算力加速,实际吞吐量会比单独的CPU TEE执行明显要高。

性能评估

在多个模型和框架上的详细评测结果。

典型示例

我们将 ConFlow 应用在 Imagenet 数据集上,并存储模型中间的特征图。

环境

需要预先安装好 TensorFlow (version > 2.0) 与 Intel SGX 相关软硬件

代码结构

  • en_ops :

    • Makefile
    • *.cc : TensorFlow自定义算子的C++文件。
  • sgx_tf_ops :

    • App :加密算子与外界的接口
    • Enclave:加密算子的真正实现文件
    • Makefile
  • model_demo :

    • DeepCrossing:DeepCrossing模型,将输入进行加密,并将非线性算子替换为加密算子。
  • operators.py : 加密算子的python包装层,模型可直接使用import operators进行使用。

  • run.sh : 配置及编译脚本

使用指南

安装

  1. 克隆我们的仓库并跳转到相应目录
git clone [email protected]:Nightliver/privacy_tf.git
cd privacy_tf
  1. 配置密钥及编译算子
sh run.sh #运行脚本
请输入扩大倍数: #输入一个数字,该数字为数据加密后扩大的倍数
请输入抽取次数: #输入一个数字,该数字为数据加密时随机抽取的次数,例如5,为从随机生成的数据中抽取5次。
请输入密钥:#输入一串数字,用‘,’分隔开,数字数目应与抽取次数相同
#等待编译完成即可。en_ops文件夹下会出现ops.so,sgx_tf_ops文件夹下会出现sgx.so文件。

简单使用及测试

测试脚本

import tensorflow.compat.v1 as tf #导入tensorflow包
import operators as sgx #导入加密算子包

sgx.create_enclave() #进行可信执行环境的初始化

a = tf.constant([[2,3,4],[-1,-2,0]],tf.float32) #创建一个tensor
b = sgx.en_crypt(a) #对tensor进行加密处理
c = sgx.e_relu(b) #对加密的tensor进行加密的relu运算
d = sgx.de_crypt(c) #对加密计算的结果进行解密

运行模型

cd ./model_demo/Deepcrossing #进入模型目录
python train.py #运行加密模型

开发自定义算子

自定义SGX算子

利用TEE框架自定义SGX算子的示例

  1. 在./sgx_tf_ops/Enclave/Enclave.cpp中实现具体计算逻辑:

      void ecall_test(float *input,int N,float *output){
    
      }
      void ecall_test_grad(float *input,float *grad,int N,float *output){
    
      }
  2. 在./sgx_tf_ops/Enclave/Enclave.edl中的trusted 中注册:

      public void ecall_test([user_check]float* input,int N,[user_check]float* output);
      public void ecall_test_grad([user_check]float* input,[user_check]float* grad,int N,[user_check]float* output);
    
  3. 在./sgx_tf_ops/App/App.h中写接口的头文件:

      void test(unsigned long int eid,float *input, int N, float *output);
      void test_grad(unsigned long int eid,float *input,float* grad, int N, float *output);
  4. 在./sgx_tf_ops/App/App.cpp中写接口函数:

      void test(unsigned long int eid,float *input, int N, float *output){
          sgx_status_t ret = ecall_test(eid, input,N,output);
          if (ret != SGX_SUCCESS) {
              print_error_message(ret);
              throw ret;
              }
      }
      void test_grad(unsigned long int eid,float *input,float *grad, int N, float *output){
          sgx_status_t ret = ecall_test_grad(eid, input,grad,N,output);
          if (ret != SGX_SUCCESS) {
              print_error_message(ret);
              throw ret;
              }
      }
  5. 最后重新make编译即可。

自定义TF算子:

构建自定义TensorFlow算子的示例

  1. 在./en_ops文件夹下新建test.cc文件

  2. 导入头文件以及设置命名空间:

      #include "tensorflow/core/framework/op.h"
      #include "tensorflow/core/framework/op_kernel.h"
      #include "tensorflow/core/framework/tensor_shape.h"
      #include "tensorflow/core/framework/shape_inference.h"
      #include <cstdlib>
      #include <iostream>
      #include <cmath>
      #include <dlfcn.h>
    
      using namespace tensorflow;
      using namespace shape_inference;
      using namespace std;
  3. 注册ops

      REGISTER_OP("ETest")
          .Input("input: float")
          .Attr("eid_low: int")
          .Attr("eid_high: int")
          .Attr("times:int")
          .Output("output: float")
          .SetShapeFn([](::tensorflow::shape_inference::InferenceContext* c) {
            c->set_output(0, c->input(0)); //形状设定
            return Status::OK();
          });
    
      REGISTER_OP("ETestGrad")
          .Input("grad: float")
          .Input("input: float")
          .Attr("eid_low: int")
          .Attr("eid_high: int")
          .Attr("times:int")
          .Output("output: float");
  4. 注册kernels

      class ETestOp : public OpKernel {
      public:
          explicit ETestOp(OpKernelConstruction* context) : OpKernel(context) {
              OP_REQUIRES_OK(context, context->GetAttr("eid_low", &eid_low_));
              OP_REQUIRES_OK(context, context->GetAttr("eid_high", &eid_high_));
              OP_REQUIRES_OK(context, context->GetAttr("times", &times_));
              lib = dlopen("(所在路径)/sgx.so",RTLD_LAZY);
              OP_REQUIRES(context, lib != NULL, errors::Unknown("Unable to load sgx.so!"));
          }
          void Compute(OpKernelContext* context) override {
          const Tensor& input = context->input(0); //获取输入
          auto input_flat = input.flat<float>(); 
          const TensorShape& input_shape = input.shape(); //获取输入形状
          Tensor* output = NULL;
          OP_REQUIRES_OK(context, context->allocate_output(0, input_shape, &output)); //初始化输出
          auto output_flat = output->flat<float>();
          int N = input_flat.size()/times_;
    
          unsigned long int eid_ = (eid_high_ << 32) + eid_low_;
          typedef void (*function)(unsigned long int eid,float* input, int N, float* output);
          dlerror();
          function test_kernel = (function) dlsym(lib, "test"); //调用SGX算子
          const char *dlsym_error = dlerror();
          OP_REQUIRES(context, !dlsym_error, errors::Unknown("loading of test failed: ", dlsym_error)); //失败处理
          test_kernel(eid_,(float*)input_flat.data(),N,(float*)output_flat.data());//调用SGX进行计算
      };
      private:
          void* lib;
          int64 eid_low_;
          int64 eid_high_;
          int64 times_;
      };
      REGISTER_KERNEL_BUILDER(Name("ETest").Device(DEVICE_CPU), ETestOp);
    
      class ETestGradOp : public OpKernel {
      public:
          explicit ETestGradOp(OpKernelConstruction* context) : OpKernel(context) {
              OP_REQUIRES_OK(context, context->GetAttr("eid_low", &eid_low_));
              OP_REQUIRES_OK(context, context->GetAttr("eid_high", &eid_high_));
              OP_REQUIRES_OK(context, context->GetAttr("times", &times_));
              lib = dlopen("(所在路径)/sgx.so",RTLD_LAZY);
              OP_REQUIRES(context, lib != NULL, errors::Unknown("Unable to load sgx.so!"));
          }
          void Compute(OpKernelContext* context) override {
          const Tensor& grad = context->input(0);
          const Tensor& input = context->input(1);
    
          auto grad_flat = grad.flat<float>();
          auto input_flat = input.flat<float>();
          // check shapes of input 
          const TensorShape& input_shape = input.shape();
          // create output tensor
          Tensor* output = NULL;
          OP_REQUIRES_OK(context, context->allocate_output(0, input_shape, &output));
          auto output_flat = output->flat<float>();
    
          const int N = input_flat.size()/times_;
    
          unsigned long int eid_ = (eid_high_ << 32) + eid_low_;
          typedef void (*function)(unsigned long int eid,float* input,float *grad, int N, float* output);
          dlerror();
          function test_grad_kernel = (function) dlsym(lib, "test_grad");
          const char *dlsym_error = dlerror();
          OP_REQUIRES(context, !dlsym_error, errors::Unknown("loading of relu_grad failed: ", dlsym_error));
          test_grad_kernel(eid_,(float*)input_flat.data(),(float*)grad_flat.data(),N,(float*)output_flat.data());
      };
      private:
          void* lib;
          int64 eid_low_;
          int64 eid_high_;
          int64 times_;
      };
      REGISTER_KERNEL_BUILDER(Name("ETestGrad").Device(DEVICE_CPU), ETestGradOp);
  5. 使用make重新编译

  6. python层包装及梯度注册

  7. 在operators.py中进行函数包装和梯度注册:

   def e_test(inputs):
       global eid,times
       return trainer_ops.e_test(inputs,eid_low=(eid&0xFFFFFFFF),eid_high=(eid>>32),times=times)
   @ops.RegisterGradient("ETest")
   def _e_test_grad(op, grad):
       with tf.name_scope("ETestGrad"), tf.xla.experimental.jit_scope(compile_ops=False):
           return trainer_ops.e_test_grad(grad,op.inputs[0],eid_low=op.get_attr("eid_low"), eid_high=op.get_attr("eid_high"),times = op.get_attr("times"))

使用

使用自定义的加密算子的示例

   import tensorflow as tf
   import operators
   operators.create_enclave() #初始化enclave
   operators.e_test() #使用自定义算子

协议

  • 本仓库中代码依照 Apache-2.0 协议开源,并遵照本项目相关声明。

声明

  • 直接或间接使用本项目原创的相关方法得到学术与商业等利益,项目原作者拥有知情权。

引用

如果您觉得我们模型/代码/论文有帮助,请给我们 ⭐ 和 引用 📝,感谢!

@INPROCEEDINGS{10247964,
  author={Li, Qiushi and Ren, Ju and Zhang, Yan and Song, Chengru and Liao, Yiqiao and Zhang, Yaoxue},
  booktitle={2023 60th ACM/IEEE Design Automation Conference (DAC)}, 
  title={Privacy-Preserving DNN Training with Prefetched Meta-Keys on Heterogeneous Neural Network Accelerators}, 
  year={2023},
  volume={},
  number={},
  pages={1-6},
  keywords={Training;Privacy;Data privacy;Design automation;Prefetching;Artificial neural networks;Resists;deep learning;privacy preserving;neural network accelerator;cloud computing;trusted execution environment},
  doi={10.1109/DAC56929.2023.10247964}}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published