Skip to content

cool-lab/Eureqa-Improvement

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

EUREQA

Run Code

python3 -X pycache_prefix=bytecodes codes/eureqa.py 

Description of the problem:

You have a real-world phenomenon, and you want to know what the function that describes its behavior.

Project description:

A simpler version of the Eureqa program is requested. A data set of a real world phenomenon is given. Candidate functions to approximate the data are of the form h(x) = f(x) + g(x), where both f and g, may be:

  1. real constants: k

  2. polynomials of degree less than or equal to 4

  3. = k1 e^(k2*x)

  4. = k1 sen(k2*x)

  5. = k1 cos(k2*x)

The program must use the genetic algorithm technique to find a function h that describe this phenomenon.

x f(x) x f(x) x f(x) x f(x)
1 0 2 2 3 4 4 5
5 6 6 6 7 7 8 8
9 10 10 10 11 12 12 12
13 14 14 14 15 16 16 16
17 18 18 22 19 21 20 20
21 24 22 26 23 28 24 28
25 30 26 30 27 31 28 30
29 35 30 35 31 39 32 41
33 42 34 45 35 45 36 48
37 48 38 50 39 50 40 51
41 52 42 54 43 55 44 57
45 58 46 60 47 61 48 64
49 66 50 69 51 71 52 76
53 74 54 77 55 78 56 81
57 82 58 82 59 82 60 84
61 84 62 88 63 89 64 93
65 94 66 97 67 98 68 99
69 100 70 103 71 104 72 106
73 108 74 110 75 111 76 114
77 115 78 117 79 118 80 121
81 123 82 125 83 126 84 125
85 125 86 136 87 136 88 138
89 138 90 142 91 140 92 146
93 144 94 150 95 148 96 151
97 150 98 153 99 153 100 157
101 157 102 157 103 159 104 157
105 156 106 157 107 157 108 161
109 159 110 162 111 162 112 165
113 173 114 175 115 173 116 176
117 175 118 175

alt text

Gene

f_f : Function f(x)
f_g : Function g(x)
c : Constant value
k1_f : Constant k1 of f(x)
k2_f : Constant k2 of f(x)
k1_g : Constant k1 of g(x)
k2_g : Constant k2 of g(x)

Chromosomes

[f_f, f_g, cf, cg, k1_f, k2_f, k1_g, k2_g]

To Find more information, please go to :

https://www.tusclases.co.cr/blog/algoritmo-genetico-schedule-optimization-python

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%