Skip to content

Commit

Permalink
Revert "[BE] [cuDNN] Always build assuming cuDNN >= 8.0 (pytorch#95722)"
Browse files Browse the repository at this point in the history
This reverts commit df4f0b3.

Reverted pytorch#95722 on behalf of https://github.com/PaliC due to is breaking a bunch of internal pytorch users ([comment](pytorch#95722 (comment)))
  • Loading branch information
pytorchmergebot committed Nov 10, 2023
1 parent 2a271a3 commit 3c9a59c
Show file tree
Hide file tree
Showing 24 changed files with 170 additions and 55 deletions.
1 change: 0 additions & 1 deletion BUILD.bazel
Original file line number Diff line number Diff line change
Expand Up @@ -413,7 +413,6 @@ cc_library(
"@cuda//:cusolver",
"@cuda//:nvrtc",
"@cudnn",
"@cudnn_frontend",
],
alwayslink = True,
)
Expand Down
3 changes: 3 additions & 0 deletions CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -213,6 +213,9 @@ cmake_dependent_option(
cmake_dependent_option(
USE_CUSPARSELT "Use cuSPARSELt" ON
"USE_CUDA" OFF)
cmake_dependent_option(
USE_EXPERIMENTAL_CUDNN_V8_API "Use experimental cuDNN v8 API" ON
"USE_CUDNN" OFF)
option(USE_FBGEMM "Use FBGEMM (quantized 8-bit server operators)" ON)
option(USE_KINETO "Use Kineto profiling library" ON)
option(USE_CUPTI_SO "Use CUPTI as a shared library" ON)
Expand Down
6 changes: 0 additions & 6 deletions WORKSPACE
Original file line number Diff line number Diff line change
Expand Up @@ -246,12 +246,6 @@ new_local_repository(
path = "/usr/",
)

new_local_repository(
name = "cudnn_frontend",
build_file = "@//third_party:cudnn_frontend.BUILD",
path = "third_party/cudnn_frontend/",
)

local_repository(
name = "com_github_google_flatbuffers",
path = "third_party/flatbuffers",
Expand Down
2 changes: 2 additions & 0 deletions aten/src/ATen/cudnn/Descriptors.h
Original file line number Diff line number Diff line change
Expand Up @@ -305,13 +305,15 @@ struct TORCH_CUDA_CPP_API CTCLossDescriptor
void set(cudnnDataType_t datatype) {
AT_CUDNN_CHECK(cudnnSetCTCLossDescriptor(mut_desc(), datatype));
}
#if CUDNN_VERSION >= 7600
void setEx(
cudnnDataType_t datatype,
cudnnLossNormalizationMode_t normMode,
cudnnNanPropagation_t gradMode) {
AT_CUDNN_CHECK(
cudnnSetCTCLossDescriptorEx(mut_desc(), datatype, normMode, gradMode));
}
#endif
};

struct TORCH_CUDA_CPP_API ActivationDescriptor
Expand Down
35 changes: 35 additions & 0 deletions aten/src/ATen/native/cudnn/BatchNorm.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -59,7 +59,11 @@ cudnnBatchNormMode_t getCudnnBatchNormMode(bool training, at::MemoryFormat memor
return CUDNN_BATCHNORM_PER_ACTIVATION;
} else if (training && memory_format == at::MemoryFormat::ChannelsLast) {

#if CUDNN_VERSION >= 7400
return CUDNN_BATCHNORM_SPATIAL_PERSISTENT;
#else
return CUDNN_BATCHNORM_SPATIAL;
#endif // CUDNN_VERSION >= 7400

} else if (training && memory_format == at::MemoryFormat::ChannelsLast3d) {

Expand Down Expand Up @@ -148,6 +152,7 @@ std::tuple<Tensor, Tensor, Tensor, Tensor> cudnn_batch_norm(
save_mean = at::empty({ num_features }, weight_t.options());
save_var = at::empty({ num_features }, weight_t.options());

#if CUDNN_VERSION >= 7400
auto op = CUDNN_BATCHNORM_OPS_BN;
size_t workspace_size;
AT_CUDNN_CHECK(cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize(
Expand Down Expand Up @@ -199,6 +204,22 @@ std::tuple<Tensor, Tensor, Tensor, Tensor> cudnn_batch_norm(
workspace_size,
reserve.mutable_data_ptr(),
reserve_size));
#else
reserve = at::empty({0}, input->options().dtype(kByte));
AT_CUDNN_CHECK(cudnnBatchNormalizationForwardTraining(
handle, mode, &one, &zero,
idesc.desc(), input->data_ptr(),
idesc.desc(), output->data_ptr(),
wdesc.desc(),
weight->data_ptr(),
bias->data_ptr(),
exponential_average_factor,
at::maybe_data_ptr(running_mean),
at::maybe_data_ptr(running_var),
epsilon,
save_mean.mutable_data_ptr(),
save_var.mutable_data_ptr()));
#endif // CUDNN_VERSION >= 7400
} else {
reserve = at::empty({0}, input->options().dtype(kByte));
// This keeps a consistent output with native_batch_norm
Expand Down Expand Up @@ -296,6 +317,7 @@ std::tuple<Tensor, Tensor, Tensor> cudnn_batch_norm_backward(
Constant one(dataType, 1);
Constant zero(dataType, 0);

#if CUDNN_VERSION >= 7400
auto op = CUDNN_BATCHNORM_OPS_BN;

size_t workspace_size;
Expand Down Expand Up @@ -332,6 +354,19 @@ std::tuple<Tensor, Tensor, Tensor> cudnn_batch_norm_backward(
workspace_size,
reserve->data_ptr(),
reserve->numel()));
#else
AT_CUDNN_CHECK(cudnnBatchNormalizationBackward(
handle, mode, &one, &zero, &one, &zero,
idesc.desc(), input->data_ptr(),
odesc.desc(), grad_output->data_ptr(),
idesc.desc(), grad_input_t.data_ptr(),
wdesc.desc(), weight->data_ptr(),
grad_weight_t.data_ptr(),
grad_bias_t.data_ptr(),
epsilon,
save_mean->data_ptr(),
save_var->data_ptr()));
#endif // CUDNN_VERSION >= 7400

return std::tuple<Tensor,Tensor,Tensor>{grad_input_t, grad_weight_t, grad_bias_t};
}
Expand Down
3 changes: 3 additions & 0 deletions aten/src/ATen/native/cudnn/ConvShared.h
Original file line number Diff line number Diff line change
Expand Up @@ -109,7 +109,9 @@ void raw_cudnn_convolution_add_relu_fallback_out(


#if AT_CUDNN_ENABLED()
#include <ATen/native/cudnn/Macros.h>

#if HAS_CUDNN_V8()
// v7 functions are preserved here to allow for runtime switching to v7
// (e.g., TORCH_CUDNN_V8_API_DISABLED=1).
// Note that v7 forward/backward out can have different behavior from the v8
Expand Down Expand Up @@ -147,4 +149,5 @@ void raw_cudnn_convolution_add_relu_out_v7(
bool deterministic,
bool allow_tf32);
#endif
#endif
}}
47 changes: 47 additions & 0 deletions aten/src/ATen/native/cudnn/Conv_v7.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@

#if AT_CUDNN_ENABLED()

#include <ATen/native/cudnn/Macros.h>
#include <ATen/core/Tensor.h>

#ifndef AT_PER_OPERATOR_HEADERS
Expand Down Expand Up @@ -59,6 +60,10 @@
// with the best algo, under the hood, cudnn will run with the slower kernel
// since it sees fastest algorithm combination with a sub optimal mathType.

// Note [blocklist fft algorithms for strided dgrad]
// This is a workaround for a CuDNN bug that gave wrong results in certain strided convolution
// gradient setups. Check Issue #16610 for bug details. Bug is there for CUDNN version < 7.5 .

constexpr size_t operator "" _TiB(unsigned long long n) {
return size_t(n) * 1024 * 1024 * 1024 * 1024;
}
Expand Down Expand Up @@ -220,6 +225,15 @@ size_t getMaxWorkspaceSize(
template<typename perf_t>
std::vector<perf_t> getValidAlgorithms(perf_t *perfResults, const ConvolutionArgs& args, int n_algo) {

// See Note [blocklist fft algorithms for strided dgrad]
#if CUDNN_VERSION < 7500
bool blocklist = std::is_same<decltype(perfResults[0].algo), cudnnConvolutionBwdDataAlgo_t>::value;
int stride_dim = args.input.dim() - 2;
blocklist &= std::any_of(std::begin(args.params.stride),
std::begin(args.params.stride) + stride_dim,
[=](int n){return n != 1;});
#endif

std::vector<perf_t> result;
result.reserve(n_algo);
for (const auto i : c10::irange(n_algo)) {
Expand All @@ -230,6 +244,16 @@ std::vector<perf_t> getValidAlgorithms(perf_t *perfResults, const ConvolutionArg
if (perf.status == CUDNN_STATUS_SUCCESS) {
if (!args.params.deterministic || perf.determinism == CUDNN_DETERMINISTIC) {

// See Note [blocklist fft algorithms for strided dgrad]
#if CUDNN_VERSION < 7500
bool skip = blocklist;
skip &= (static_cast<cudnnConvolutionBwdDataAlgo_t>(perfResults[i].algo) == CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT_TILING ||
static_cast<cudnnConvolutionBwdDataAlgo_t>(perfResults[i].algo) == CUDNN_CONVOLUTION_BWD_DATA_ALGO_FFT);
if (skip) {
continue;
}
#endif

result.push_back(perf);
}
}
Expand Down Expand Up @@ -469,9 +493,11 @@ class AlgoIterator {
perfResults[0].mathType = CUDNN_TENSOR_OP_MATH;
} else {
perfResults[0].mathType = CUDNN_DEFAULT_MATH;
#if defined(CUDNN_VERSION) && CUDNN_VERSION >= 8000
if (args.params.dataType == CUDNN_DATA_FLOAT && !args.params.allow_tf32) {
perfResults[0].mathType = CUDNN_FMA_MATH;
}
#endif
}
search::getWorkspaceSize(args, perfResults[0].algo, &(perfResults[0].memory));
return perfResults;
Expand Down Expand Up @@ -584,10 +610,14 @@ static inline void split_batch_dim_to_32bit_out(
}


#if defined(CUDNN_VERSION) && CUDNN_VERSION >= 8000
#define ASSERT_CORRECT_PRECISION(math_type) \
if (args.params.dataType == CUDNN_DATA_FLOAT) { \
TORCH_INTERNAL_ASSERT(args.params.allow_tf32 || math_type == CUDNN_FMA_MATH); \
}
#else
#define ASSERT_CORRECT_PRECISION(math_type)
#endif // CUDNN_VERSION >= 8000


// ---------------------------------------------------------------------
Expand Down Expand Up @@ -642,7 +672,11 @@ void raw_cudnn_convolution_forward_out_32bit(
}


#if !HAS_CUDNN_V8()
void raw_cudnn_convolution_forward_out(
#else
void raw_cudnn_convolution_forward_out_v7(
#endif
const Tensor& output, const Tensor& input, const Tensor& weight,
IntArrayRef padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups,
bool benchmark, bool deterministic, bool allow_tf32) {
Expand Down Expand Up @@ -700,7 +734,11 @@ void raw_cudnn_convolution_backward_input_out_32bit(
);
}

#if !HAS_CUDNN_V8()
void raw_cudnn_convolution_backward_input_out(
#else
void raw_cudnn_convolution_backward_input_out_v7(
#endif
const at::Tensor& grad_input,
const at::Tensor& grad_output,
const at::Tensor& weight,
Expand Down Expand Up @@ -759,7 +797,11 @@ void raw_cudnn_convolution_backward_weight_out_32bit(
);
}

#if !HAS_CUDNN_V8()
void raw_cudnn_convolution_backward_weight_out(
#else
void raw_cudnn_convolution_backward_weight_out_v7(
#endif
const Tensor& grad_weight, const Tensor& grad_output, const Tensor& input,
IntArrayRef padding, IntArrayRef stride, IntArrayRef dilation, int64_t groups,
bool benchmark, bool deterministic, bool allow_tf32) {
Expand Down Expand Up @@ -811,7 +853,12 @@ void raw_cudnn_convolution_backward_weight_out_v7(
TORCH_INTERNAL_ASSERT(false, "This case should not be dispatched to cuDNN.");
}

#if !HAS_CUDNN_V8()
void raw_cudnn_convolution_add_relu_out(
#else
void raw_cudnn_convolution_add_relu_out_v7(
#endif

const Tensor& output,
const Tensor& input,
const Tensor& weight,
Expand Down
5 changes: 5 additions & 0 deletions aten/src/ATen/native/cudnn/Conv_v8.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,10 @@

#if AT_CUDNN_ENABLED()

#include <ATen/native/cudnn/Macros.h>

#if HAS_CUDNN_V8()

#include <ATen/cudnn/cudnn-wrapper.h>

#include <c10/macros/Macros.h>
Expand Down Expand Up @@ -796,4 +800,5 @@ void raw_cudnn_convolution_add_relu_out(

}} // at::native

#endif // HAS_CUDNN_V8
#endif // AT_CUDNN_ENABLED
2 changes: 1 addition & 1 deletion aten/src/ATen/native/cudnn/LossCTC.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@
#include <ATen/ops/empty_like.h>
#endif

#if (!AT_CUDNN_ENABLED())
#if (!AT_CUDNN_ENABLED()) || (CUDNN_VERSION < 7600)

namespace at { namespace native {

Expand Down
12 changes: 12 additions & 0 deletions aten/src/ATen/native/cudnn/Macros.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
#pragma once

#include <ATen/cudnn/cudnn-wrapper.h>

// Note: The version below should not actually be 8000. Instead, it should
// be whatever version of cuDNN that v8 API work with PyTorch correctly.
// The version is set to 8000 today for convenience of debugging.
#if defined(USE_EXPERIMENTAL_CUDNN_V8_API) && defined(CUDNN_VERSION) && CUDNN_VERSION >= 8200
#define HAS_CUDNN_V8() true
#else
#define HAS_CUDNN_V8() false
#endif
5 changes: 2 additions & 3 deletions aten/src/ATen/native/quantized/cpu/fbgemm_utils.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,7 @@
#include <utility>
#endif

int register_linear_params();
int register_embedding_params();

#ifdef USE_FBGEMM
Expand Down Expand Up @@ -436,9 +437,7 @@ TORCH_API int register_conv_params<2>();
template
TORCH_API int register_conv_params<3>();

TORCH_API int register_linear_params();

TORCH_API int register_linear_params() {
int register_linear_params() {
using SerializationType = std::tuple<at::Tensor, c10::optional<at::Tensor>>;
static auto register_linear_params =
torch::selective_class_<LinearPackedParamsBase>(
Expand Down
3 changes: 3 additions & 0 deletions aten/src/ATen/native/quantized/cudnn/BinaryOps.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,8 @@
#include <ATen/cuda/CUDAConfig.h> // for the definition of AT_CUDNN_ENABLED

#if AT_CUDNN_ENABLED()
#include <ATen/native/cudnn/Macros.h>
#if HAS_CUDNN_V8()

#include <ATen/core/TensorBase.h>
#include <ATen/core/TensorBody.h>
Expand Down Expand Up @@ -257,5 +259,6 @@ TORCH_LIBRARY_IMPL(quantized, QuantizedCUDA, m) {
} // namespace native
} // namespace at

#endif // HAS_CUDNN_V8
#endif // AT_CUDNN_ENABLED
#endif // USE_CUDA
12 changes: 4 additions & 8 deletions aten/src/ATen/native/quantized/cudnn/Conv.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -3,8 +3,11 @@

#if AT_CUDNN_ENABLED()

#include <ATen/native/cudnn/Macros.h>
#include <c10/util/ArrayRef.h>

#if HAS_CUDNN_V8()

#include <ATen/ATen.h>
#include <ATen/cuda/Exceptions.h>
#include <ATen/cudnn/Handle.h>
Expand All @@ -22,12 +25,6 @@
#include <unordered_map>
#include <vector>

template <int kSpatialDim = 2>
int register_conv_params();

extern template int register_conv_params<2>();
extern template int register_conv_params<3>();

// TODO: there is a table from input dtype and weight dtype to operator qdtype,
// we can derive the operator dtype based on input dtype
cudnn_frontend::ConvDesc_v8 getConvDescriptor(cudnnDataType_t dataType, c10::IntArrayRef padding, c10::IntArrayRef stride, c10::IntArrayRef dilation) {
Expand Down Expand Up @@ -394,8 +391,6 @@ TORCH_LIBRARY_IMPL(quantized, QuantizedCUDA, m) {
// this is inconsistent with what has been done for conv2d where new variants use packed weights, and
// old variant does not. we adopt this inconsistency for now to be consistent with QuantizedCPU's conv1d
// and will eventually deprecate the old variants
register_conv_params<2>();
register_conv_params<3>();
m.impl(TORCH_SELECTIVE_NAME("quantized::conv1d"), QConv1dInt8<false>::run);
m.impl(TORCH_SELECTIVE_NAME("quantized::conv1d_relu"), QConv1dInt8<true>::run);
m.impl(TORCH_SELECTIVE_NAME("quantized::conv2d.new"), QConvInt8<2, false>::run);
Expand All @@ -406,5 +401,6 @@ TORCH_LIBRARY_IMPL(quantized, QuantizedCUDA, m) {
} // namespace at::native


#endif // HAS_CUDNN_V8
#endif // AT_CUDNN_ENABLED
#endif // USE_CUDA
Loading

0 comments on commit 3c9a59c

Please sign in to comment.