Skip to content

Commit

Permalink
初始化以及适配mbv3并且实现从paddle模型的导入
Browse files Browse the repository at this point in the history
  • Loading branch information
novioleo committed May 15, 2020
1 parent c6cf730 commit 71bb636
Showing 1 changed file with 234 additions and 0 deletions.
234 changes: 234 additions & 0 deletions networks/backbones/mobilenet_v3.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,234 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from collections import OrderedDict

import torch.nn.functional as F
from torch import nn
import torch


class HSwish(nn.Module):
def forward(self, x):
out = x * F.relu6(x + 3, inplace=True) / 6
return out


class ConvBNACT(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride, padding, num_groups=1, act=None):
super().__init__()
self.conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
stride=stride, padding=padding, groups=num_groups,
bias=False)
self.bn = nn.BatchNorm2d(out_channels)
if act == 'relu':
self.act = nn.ReLU()
elif act == 'hard_swish':
self.act = HSwish()
elif act is None:
self.act = None

def load_3rd_state_dict(self, _3rd_name, _state, _name_prefix):
to_load_state_dict = OrderedDict()
if _3rd_name == 'paddle':
to_load_state_dict['conv.weight'] = torch.Tensor(_state[f'{_name_prefix}_weights'])
to_load_state_dict['bn.weight'] = torch.Tensor(_state[f'{_name_prefix}_bn_scale'])
to_load_state_dict['bn.bias'] = torch.Tensor(_state[f'{_name_prefix}_bn_offset'])
to_load_state_dict['bn.running_mean'] = torch.Tensor(_state[f'{_name_prefix}_bn_mean'])
to_load_state_dict['bn.running_var'] = torch.Tensor(_state[f'{_name_prefix}_bn_variance'])
self.load_state_dict(to_load_state_dict)
else:
pass

def forward(self, x):
x = self.conv(x)
x = self.bn(x)
if self.act is not None:
x = self.act(x)
return x


class ResidualUnit(nn.Module):
def __init__(self, num_in_filter, num_mid_filter, num_out_filter, stride, kernel_size, act=None, use_se=False):
super().__init__()
self.conv0 = ConvBNACT(in_channels=num_in_filter, out_channels=num_mid_filter, kernel_size=1, stride=1,
padding=0, act=act)

self.conv1 = ConvBNACT(in_channels=num_mid_filter, out_channels=num_mid_filter, kernel_size=kernel_size,
stride=stride,
padding=int((kernel_size - 1) // 2), act=act, num_groups=num_mid_filter)
if use_se:
self.se = SEBlock(in_channels=num_mid_filter, out_channels=num_mid_filter)
else:
self.se = None

self.conv2 = ConvBNACT(in_channels=num_mid_filter, out_channels=num_out_filter, kernel_size=1, stride=1,
padding=0)
self.not_add = num_in_filter != num_out_filter or stride != 1

def load_3rd_state_dict(self, _3rd_name, _state, _convolution_index):
if _3rd_name == 'paddle':
self.conv0.load_3rd_state_dict(_3rd_name, _state, f'conv{_convolution_index}_expand')
self.conv1.load_3rd_state_dict(_3rd_name, _state, f'conv{_convolution_index}_depthwise')
if self.se is not None:
self.se.load_3rd_state_dict(_3rd_name, _state, f'conv{_convolution_index}_se')
self.conv2.load_3rd_state_dict(_3rd_name, _state, f'conv{_convolution_index}_linear')
else:
pass
pass

def forward(self, x):
y = self.conv0(x)
y = self.conv1(y)
if self.se is not None:
y = self.se(y)
y = self.conv2(y)
if self.not_add == False:
y = x + y
return y


class SEBlock(nn.Module):
def __init__(self, in_channels, out_channels, ratio=4):
super().__init__()
num_mid_filter = out_channels // ratio
self.pool = nn.AdaptiveAvgPool2d(1)
self.conv1 = nn.Conv2d(in_channels=in_channels, out_channels=num_mid_filter, kernel_size=1, bias=True)
self.relu1 = nn.ReLU()
self.conv2 = nn.Conv2d(in_channels=num_mid_filter, kernel_size=1, out_channels=out_channels, bias=True)
self.relu2 = HSwish()

def load_3rd_state_dict(self, _3rd_name, _state, _name_prefix):
to_load_state_dict = OrderedDict()
if _3rd_name == 'paddle':
to_load_state_dict['conv1.weight'] = torch.Tensor(_state[f'{_name_prefix}_1_weights'])
to_load_state_dict['conv2.weight'] = torch.Tensor(_state[f'{_name_prefix}_2_weights'])
to_load_state_dict['conv1.bias'] = torch.Tensor(_state[f'{_name_prefix}_1_offset'])
to_load_state_dict['conv2.bias'] = torch.Tensor(_state[f'{_name_prefix}_2_offset'])
self.load_state_dict(to_load_state_dict)
else:
pass

def forward(self, x):
attn = self.pool(x)
attn = self.conv1(attn)
attn = self.relu1(attn)
attn = self.conv2(attn)
attn = self.relu2(attn)
return x * attn


class MobileNetV3(nn.Module):
def __init__(self, in_channels, **kwargs):
super().__init__()
self.scale = kwargs.get('scale', 0.5)
model_name = kwargs.get('model_name', 'large')
self.inplanes = 16
if model_name == "large":
self.cfg = [
# k, exp, c, se, nl, s,
[3, 16, 16, False, 'relu', 1],
[3, 64, 24, False, 'relu', (2, 1)],
[3, 72, 24, False, 'relu', 1],
[5, 72, 40, True, 'relu', (2, 1)],
[5, 120, 40, True, 'relu', 1],
[5, 120, 40, True, 'relu', 1],
[3, 240, 80, False, 'hard_swish', 1],
[3, 200, 80, False, 'hard_swish', 1],
[3, 184, 80, False, 'hard_swish', 1],
[3, 184, 80, False, 'hard_swish', 1],
[3, 480, 112, True, 'hard_swish', 1],
[3, 672, 112, True, 'hard_swish', 1],
[5, 672, 160, True, 'hard_swish', (2, 1)],
[5, 960, 160, True, 'hard_swish', 1],
[5, 960, 160, True, 'hard_swish', 1],
]
self.cls_ch_squeeze = 960
self.cls_ch_expand = 1280
elif model_name == "small":
self.cfg = [
# k, exp, c, se, nl, s,
[3, 16, 16, True, 'relu', (2, 1)],
[3, 72, 24, False, 'relu', (2, 1)],
[3, 88, 24, False, 'relu', 1],
[5, 96, 40, True, 'hard_swish', (2, 1)],
[5, 240, 40, True, 'hard_swish', 1],
[5, 240, 40, True, 'hard_swish', 1],
[5, 120, 48, True, 'hard_swish', 1],
[5, 144, 48, True, 'hard_swish', 1],
[5, 288, 96, True, 'hard_swish', (2, 1)],
[5, 576, 96, True, 'hard_swish', 1],
[5, 576, 96, True, 'hard_swish', 1],
]
self.cls_ch_squeeze = 576
self.cls_ch_expand = 1280
else:
raise NotImplementedError("mode[" + model_name +
"_model] is not implemented!")

supported_scale = [0.35, 0.5, 0.75, 1.0, 1.25]
assert self.scale in supported_scale, "supported scale are {} but input scale is {}".format(supported_scale,
self.scale)

scale = self.scale
inplanes = self.inplanes
cfg = self.cfg
cls_ch_squeeze = self.cls_ch_squeeze
cls_ch_expand = self.cls_ch_expand
# conv1
self.conv1 = ConvBNACT(in_channels=in_channels,
out_channels=self.make_divisible(inplanes * scale),
kernel_size=3,
stride=2,
padding=1,
num_groups=1,
act='hard_swish')
i = 0
inplanes = self.make_divisible(inplanes * scale)
block_list = []
for layer_cfg in cfg:
block = ResidualUnit(num_in_filter=inplanes,
num_mid_filter=self.make_divisible(scale * layer_cfg[1]),
num_out_filter=self.make_divisible(scale * layer_cfg[2]),
act=layer_cfg[4],
stride=layer_cfg[5],
kernel_size=layer_cfg[0],
use_se=layer_cfg[3])
block_list.append(block)
inplanes = self.make_divisible(scale * layer_cfg[2])

self.block_list = nn.Sequential(*block_list)
self.conv2 = ConvBNACT(in_channels=inplanes,
out_channels=self.make_divisible(scale * cls_ch_squeeze),
kernel_size=1,
stride=1,
padding=0,
num_groups=1,
act='hard_swish')

self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)

def make_divisible(self, v, divisor=8, min_value=None):
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
if new_v < 0.9 * v:
new_v += divisor
return new_v

def load_3rd_state_dict(self, _3rd_name, _state):
if _3rd_name == 'paddle':
self.conv1.load_3rd_state_dict(_3rd_name, _state, 'conv1')
for m_block_index, m_block in enumerate(self.block_list, 2):
m_block.load_3rd_state_dict(_3rd_name, _state, m_block_index)
self.conv2.load_3rd_state_dict(_3rd_name, _state, 'conv_last')
else:
pass

def forward(self, x):
x = self.conv1(x)
x = self.block_list(x)
x = self.conv2(x)
x = self.pool(x)
return x

0 comments on commit 71bb636

Please sign in to comment.