Unsupervised Deformable Image Registration with Absent Correspondences in Pre-operative and Post-Recurrence Brain Tumor MRI Scans
This is the official Pytorch implementation of "Unsupervised Deformable Image Registration with Absent Correspondences in Pre-operative and Post-Recurrence Brain Tumor MRI Scans" (MICCAI 2022), written by Tony C. W. Mok and Albert C. S. Chung.
Python 3.5.2+
Pytorch 1.3.0 - 1.9.1
NumPy
NiBabel
Scipy
This code has been tested with Pytorch 1.10.0
and NVIDIA TITAN RTX GPU.
Inference for DIRAC:
python BRATS_test_DIRAC.py
Inference for DIRAC-D:
python BRATS_test_DIRAC_D.py
Step 1: Download the BraTS-Reg dataset from https://www.med.upenn.edu/cbica/brats-reg-challenge/
Step 2: Define and split the dataset into training and validation set, i.e., 'Dataset/BraTSReg_self_train' and 'Dataset/BraTSReg_self_valid', respectively.
Step 3: python BRATS_train_DIRAC.py
to train the DIRAC model or python BRATS_train_DIRAC_D.py
to train the DIRAC-D model.
If you find this repository useful, please cite:
-
Unsupervised Deformable Image Registration with Absent Correspondences in Pre-operative and Post-Recurrence Brain Tumor MRI Scans
Tony C. W. Mok, Albert C. S. Chung
MICCAI 2022. eprint arXiv:2206.03900 -
Conditional Deformable Image Registration with Convolutional Neural Network
Tony C. W. Mok, Albert C. S. Chung
MICCAI 2021. eprint arXiv:2106.12673
Keywords: Absent correspondences, Patient-specific registration, Deformable registration