Skip to content

Commit

Permalink
Merge pull request TheAlgorithms#1 from RiptideBo/stephen_branch
Browse files Browse the repository at this point in the history
stephen_branch
  • Loading branch information
RiptideBo authored Sep 22, 2017
2 parents e1befed + 6e61ac1 commit da449e0
Show file tree
Hide file tree
Showing 2 changed files with 336 additions and 13 deletions.
305 changes: 305 additions & 0 deletions Neural_Network/convolution_neural_network.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,305 @@
#-*- coding: utf-8 -*-

'''
- - - - - -- - - - - - - - - - - - - - - - - - - - - - -
Name - - CNN - Convolution Neural Network For Photo Recognizing
Goal - - Recognize Handing Writting Word Photo
Detail:Total 5 layers neural network
* Convolution layer
* Pooling layer
* Input layer layer of BP
* Hiden layer of BP
* Output layer of BP
Author: Stephen Lee
Github: [email protected]
Date: 2017.9.20
- - - - - -- - - - - - - - - - - - - - - - - - - - - - -
'''

import numpy as np
import matplotlib.pyplot as plt

class CNN():

def __init__(self,conv1_get,size_p1,bp_num1,bp_num2,bp_num3,rate_w=0.2,rate_t=0.2):
'''
:param conv1_get: [a,c,d],size, number, step of convolution kernel
:param size_p1: pooling size
:param bp_num1: units number of flatten layer
:param bp_num2: units number of hidden layer
:param bp_num3: units number of output layer
:param rate_w: rate of weight learning
:param rate_t: rate of threshold learning
'''
self.num_bp1 = bp_num1
self.num_bp2 = bp_num2
self.num_bp3 = bp_num3
self.conv1 = conv1_get[:2]
self.step_conv1 = conv1_get[2]
self.size_pooling1 = size_p1
self.rate_weight = rate_w
self.rate_thre = rate_t
self.w_conv1 = [np.mat(-1*np.random.rand(self.conv1[0],self.conv1[0])+0.5) for i in range(self.conv1[1])]
self.wkj = np.mat(-1 * np.random.rand(self.num_bp3, self.num_bp2) + 0.5)
self.vji = np.mat(-1*np.random.rand(self.num_bp2, self.num_bp1)+0.5)
self.thre_conv1 = -2*np.random.rand(self.conv1[1])+1
self.thre_bp2 = -2*np.random.rand(self.num_bp2)+1
self.thre_bp3 = -2*np.random.rand(self.num_bp3)+1


def save_model(self,save_path):
#save model dict with pickle
import pickle
model_dic = {'num_bp1':self.num_bp1,
'num_bp2':self.num_bp2,
'num_bp3':self.num_bp3,
'conv1':self.conv1,
'step_conv1':self.step_conv1,
'size_pooling1':self.size_pooling1,
'rate_weight':self.rate_weight,
'rate_thre':self.rate_thre,
'w_conv1':self.w_conv1,
'wkj':self.wkj,
'vji':self.vji,
'thre_conv1':self.thre_conv1,
'thre_bp2':self.thre_bp2,
'thre_bp3':self.thre_bp3}
with open(save_path, 'wb') as f:
pickle.dump(model_dic, f)

print('Model saved: %s'% save_path)

@classmethod
def ReadModel(cls,model_path):
#read saved model
import pickle
with open(model_path, 'rb') as f:
model_dic = pickle.load(f)

conv_get= model_dic.get('conv1')
conv_get.append(model_dic.get('step_conv1'))
size_p1 = model_dic.get('size_pooling1')
bp1 = model_dic.get('num_bp1')
bp2 = model_dic.get('num_bp2')
bp3 = model_dic.get('num_bp3')
r_w = model_dic.get('rate_weight')
r_t = model_dic.get('rate_thre')
#create model instance
conv_ins = CNN(conv_get,size_p1,bp1,bp2,bp3,r_w,r_t)
#modify model parameter
conv_ins.w_conv1 = model_dic.get('w_conv1')
conv_ins.wkj = model_dic.get('wkj')
conv_ins.vji = model_dic.get('vji')
conv_ins.thre_conv1 = model_dic.get('thre_conv1')
conv_ins.thre_bp2 = model_dic.get('thre_bp2')
conv_ins.thre_bp3 = model_dic.get('thre_bp3')
return conv_ins


def sig(self,x):
return 1 / (1 + np.exp(-1*x))

def do_round(self,x):
return round(x, 3)

def convolute(self,data,convs,w_convs,thre_convs,conv_step):
#convolution process
size_conv = convs[0]
num_conv =convs[1]
size_data = np.shape(data)[0]
#get the data slice of original image data, data_focus
data_focus = []
for i_focus in range(0, size_data - size_conv + 1, conv_step):
for j_focus in range(0, size_data - size_conv + 1, conv_step):
focus = data[i_focus:i_focus + size_conv, j_focus:j_focus + size_conv]
data_focus.append(focus)
#caculate the feature map of every single kernel, and saved as list of matrix
data_featuremap = []
Size_FeatureMap = int((size_data - size_conv) / conv_step + 1)
for i_map in range(num_conv):
featuremap = []
for i_focus in range(len(data_focus)):
net_focus = np.sum(np.multiply(data_focus[i_focus], w_convs[i_map])) - thre_convs[i_map]
featuremap.append(self.sig(net_focus))
featuremap = np.asmatrix(featuremap).reshape(Size_FeatureMap, Size_FeatureMap)
data_featuremap.append(featuremap)

#expanding the data slice to One dimenssion
focus1_list = []
for each_focus in data_focus:
focus1_list.extend(self.Expand_Mat(each_focus))
focus_list = np.asarray(focus1_list)
return focus_list,data_featuremap

def pooling(self,featuremaps,size_pooling,type='average_pool'):
#pooling process
size_map = len(featuremaps[0])
size_pooled = int(size_map/size_pooling)
featuremap_pooled = []
for i_map in range(len(featuremaps)):
map = featuremaps[i_map]
map_pooled = []
for i_focus in range(0,size_map,size_pooling):
for j_focus in range(0, size_map, size_pooling):
focus = map[i_focus:i_focus + size_pooling, j_focus:j_focus + size_pooling]
if type == 'average_pool':
#average pooling
map_pooled.append(np.average(focus))
elif type == 'max_pooling':
#max pooling
map_pooled.append(np.max(focus))
map_pooled = np.asmatrix(map_pooled).reshape(size_pooled,size_pooled)
featuremap_pooled.append(map_pooled)
return featuremap_pooled

def _expand(self,datas):
#expanding three dimension data to one dimension list
data_expanded = []
for i in range(len(datas)):
shapes = np.shape(datas[i])
data_listed = datas[i].reshape(1,shapes[0]*shapes[1])
data_listed = data_listed.getA().tolist()[0]
data_expanded.extend(data_listed)
data_expanded = np.asarray(data_expanded)
return data_expanded

def _expand_mat(self,data_mat):
#expanding matrix to one dimension list
data_mat = np.asarray(data_mat)
shapes = np.shape(data_mat)
data_expanded = data_mat.reshape(1,shapes[0]*shapes[1])
return data_expanded

def _calculate_gradient_from_pool(self,out_map,pd_pool,num_map,size_map,size_pooling):
'''
calcluate the gradient from the data slice of pool layer
pd_pool: list of matrix
out_map: the shape of data slice(size_map*size_map)
return: pd_all: list of matrix, [num, size_map, size_map]
'''
pd_all = []
i_pool = 0
for i_map in range(num_map):
pd_conv1 = np.ones((size_map, size_map))
for i in range(0, size_map, size_pooling):
for j in range(0, size_map, size_pooling):
pd_conv1[i:i + size_pooling, j:j + size_pooling] = pd_pool[i_pool]
i_pool = i_pool + 1
pd_conv2 = np.multiply(pd_conv1,np.multiply(out_map[i_map],(1-out_map[i_map])))
pd_all.append(pd_conv2)
return pd_all

def trian(self,patterns,datas_train, datas_teach, n_repeat, error_accuracy,draw_e = bool):
#model traning
print('----------------------Start Training-------------------------')
print(' - - Shape: Train_Data ',np.shape(datas_train))
print(' - - Shape: Teach_Data ',np.shape(datas_teach))
rp = 0
all_mse = []
mse = 10000
while rp < n_repeat and mse >= error_accuracy:
alle = 0
print('-------------Learning Time %d--------------'%rp)
for p in range(len(datas_train)):
#print('------------Learning Image: %d--------------'%p)
data_train = np.asmatrix(datas_train[p])
data_teach = np.asarray(datas_teach[p])
data_focus1,data_conved1 = self.convolute(data_train,self.conv1,self.w_conv1,
self.thre_conv1,conv_step=self.step_conv1)
data_pooled1 = self.pooling(data_conved1,self.size_pooling1)
shape_featuremap1 = np.shape(data_conved1)
'''
print(' -----original shape ', np.shape(data_train))
print(' ---- after convolution ',np.shape(data_conv1))
print(' -----after pooling ',np.shape(data_pooled1))
'''
data_bp_input = self._expand(data_pooled1)
bp_out1 = data_bp_input

bp_net_j = np.dot(bp_out1,self.vji.T) - self.thre_bp2
bp_out2 = self.sig(bp_net_j)
bp_net_k = np.dot(bp_out2 ,self.wkj.T) - self.thre_bp3
bp_out3 = self.sig(bp_net_k)

#--------------Model Leaning ------------------------
# calcluate error and gradient---------------
pd_k_all = np.multiply((data_teach - bp_out3), np.multiply(bp_out3, (1 - bp_out3)))
pd_j_all = np.multiply(np.dot(pd_k_all,self.wkj), np.multiply(bp_out2, (1 - bp_out2)))
pd_i_all = np.dot(pd_j_all,self.vji)

pd_conv1_pooled = pd_i_all / (self.size_pooling1*self.size_pooling1)
pd_conv1_pooled = pd_conv1_pooled.T.getA().tolist()
pd_conv1_all = self._calculate_gradient_from_pool(data_conved1,pd_conv1_pooled,shape_featuremap1[0],
shape_featuremap1[1],self.size_pooling1)
#weight and threshold learning process---------
#convolution layer
for k_conv in range(self.conv1[1]):
pd_conv_list = self._expand_mat(pd_conv1_all[k_conv])
delta_w = self.rate_weight * np.dot(pd_conv_list,data_focus1)

self.w_conv1[k_conv] = self.w_conv1[k_conv] + delta_w.reshape((self.conv1[0],self.conv1[0]))

self.thre_conv1[k_conv] = self.thre_conv1[k_conv] - np.sum(pd_conv1_all[k_conv]) * self.rate_thre
#all connected layer
self.wkj = self.wkj + pd_k_all.T * bp_out2 * self.rate_weight
self.vji = self.vji + pd_j_all.T * bp_out1 * self.rate_weight
self.thre_bp3 = self.thre_bp3 - pd_k_all * self.rate_thre
self.thre_bp2 = self.thre_bp2 - pd_j_all * self.rate_thre
# calculate the sum error of all single image
errors = np.sum(abs((data_teach - bp_out3)))
alle = alle + errors
#print(' ----Teach ',data_teach)
#print(' ----BP_output ',bp_out3)
rp = rp + 1
mse = alle/patterns
all_mse.append(mse)
def draw_error():
yplot = [error_accuracy for i in range(int(n_repeat * 1.2))]
plt.plot(all_mse, '+-')
plt.plot(yplot, 'r--')
plt.xlabel('Learning Times')
plt.ylabel('All_mse')
plt.grid(True, alpha=0.5)
plt.show()
print('------------------Training Complished---------------------')
print(' - - Training epoch: ', rp, ' - - Mse: %.6f' % mse)
if draw_e:
draw_error()
return mse

def predict(self,datas_test):
#model predict
produce_out = []
print('-------------------Start Testing-------------------------')
print(' - - Shape: Test_Data ',np.shape(datas_test))
for p in range(len(datas_test)):
data_test = np.asmatrix(datas_test[p])
data_focus1, data_conved1 = self.convolute(data_test, self.conv1, self.w_conv1,
self.thre_conv1, conv_step=self.step_conv1)
data_pooled1 = self.pooling(data_conved1, self.size_pooling1)
data_bp_input = self._expand(data_pooled1)

bp_out1 = data_bp_input
bp_net_j = bp_out1 * self.vji.T - self.thre_bp2
bp_out2 = self.sig(bp_net_j)
bp_net_k = bp_out2 * self.wkj.T - self.thre_bp3
bp_out3 = self.sig(bp_net_k)
produce_out.extend(bp_out3.getA().tolist())
res = [list(map(self.do_round,each)) for each in produce_out]
return np.asarray(res)

def convolution(self,data):
#return the data of image after convoluting process so we can check it out
data_test = np.asmatrix(data)
data_focus1, data_conved1 = self.convolute(data_test, self.conv1, self.w_conv1,
self.thre_conv1, conv_step=self.step_conv1)
data_pooled1 = self.pooling(data_conved1, self.size_pooling1)

return data_conved1,data_pooled1


if __name__ == '__main__':
pass
'''
I will put the example on other file
'''
44 changes: 31 additions & 13 deletions Neural_Network/neuralnetwork_bp3.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@
import numpy as np
import matplotlib.pyplot as plt

class Bpnw():
class Bpnn():

def __init__(self,n_layer1,n_layer2,n_layer3,rate_w=0.3,rate_t=0.3):
'''
Expand Down Expand Up @@ -38,7 +38,7 @@ def sig_plain(self,x):
def do_round(self,x):
return round(x, 3)

def trian(self,patterns,data_train, data_teach, n_repeat, error_accuracy,draw_e = bool):
def trian(self,patterns,data_train, data_teach, n_repeat, error_accuracy, draw_e=False):
'''
:param patterns: the number of patterns
:param data_train: training data x; numpy.ndarray
Expand All @@ -49,9 +49,9 @@ def trian(self,patterns,data_train, data_teach, n_repeat, error_accuracy,draw_e
'''
data_train = np.asarray(data_train)
data_teach = np.asarray(data_teach)
print('-------------------Start Training-------------------------')
print(' - - Shape: Train_Data ',np.shape(data_train))
print(' - - Shape: Teach_Data ',np.shape(data_teach))
# print('-------------------Start Training-------------------------')
# print(' - - Shape: Train_Data ',np.shape(data_train))
# print(' - - Shape: Teach_Data ',np.shape(data_teach))
rp = 0
all_mse = []
mse = 10000
Expand Down Expand Up @@ -95,9 +95,9 @@ def draw_error():
plt.ylabel('All_mse')
plt.grid(True,alpha = 0.7)
plt.show()
print('------------------Training Complished---------------------')
print(' - - Training epoch: ', rp, ' - - Mse: %.6f'%mse)
print(' - - Last Output: ', final_out3)
# print('------------------Training Complished---------------------')
# print(' - - Training epoch: ', rp, ' - - Mse: %.6f'%mse)
# print(' - - Last Output: ', final_out3)
if draw_e:
draw_error()

Expand All @@ -108,9 +108,9 @@ def predict(self,data_test):
'''
data_test = np.asarray(data_test)
produce_out = []
print('-------------------Start Testing-------------------------')
print(' - - Shape: Test_Data ',np.shape(data_test))
print(np.shape(data_test))
# print('-------------------Start Testing-------------------------')
# print(' - - Shape: Test_Data ',np.shape(data_test))
# print(np.shape(data_test))
for g in range(np.shape(data_test)[0]):

net_i = data_test[g]
Expand All @@ -127,8 +127,26 @@ def predict(self,data_test):


def main():
#I will fish the mian function later
pass
#example data
data_x = [[1,2,3,4],
[5,6,7,8],
[2,2,3,4],
[7,7,8,8]]
data_y = [[1,0,0,0],
[0,1,0,0],
[0,0,1,0],
[0,0,0,1]]

test_x = [[1,2,3,4],
[3,2,3,4]]

#building network model
model = Bpnn(4,10,4)
#training the model
model.trian(patterns=4,data_train=data_x,data_teach=data_y,
n_repeat=100,error_accuracy=0.1,draw_e=True)
#predicting data
model.predict(test_x)

if __name__ == '__main__':
main()

0 comments on commit da449e0

Please sign in to comment.