Skip to content

Commit

Permalink
Feat: Boilerplate for timeseries dataset
Browse files Browse the repository at this point in the history
- Added a practice file

Signed-off-by: Arkadip <[email protected]>
  • Loading branch information
darkmatter18 committed Feb 17, 2020
1 parent 65963e6 commit 4c75cf8
Show file tree
Hide file tree
Showing 4 changed files with 2,465 additions and 186 deletions.
266 changes: 266 additions & 0 deletions Untitled.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,266 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"from preprocessing import Normalize_df"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>time</th>\n",
" <th>air_temperature_mean</th>\n",
" <th>pressure</th>\n",
" <th>wind_direction</th>\n",
" <th>wind_speed</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <td>0</td>\n",
" <td>0.000000</td>\n",
" <td>0.370203</td>\n",
" <td>0.103164</td>\n",
" <td>0.732591</td>\n",
" <td>0.625000</td>\n",
" </tr>\n",
" <tr>\n",
" <td>1</td>\n",
" <td>0.000011</td>\n",
" <td>0.322799</td>\n",
" <td>0.268912</td>\n",
" <td>0.838440</td>\n",
" <td>0.354167</td>\n",
" </tr>\n",
" <tr>\n",
" <td>2</td>\n",
" <td>0.000022</td>\n",
" <td>0.302483</td>\n",
" <td>0.709078</td>\n",
" <td>0.988858</td>\n",
" <td>0.260417</td>\n",
" </tr>\n",
" <tr>\n",
" <td>3</td>\n",
" <td>0.000033</td>\n",
" <td>0.246050</td>\n",
" <td>0.850758</td>\n",
" <td>0.239554</td>\n",
" <td>0.093750</td>\n",
" </tr>\n",
" <tr>\n",
" <td>4</td>\n",
" <td>0.000044</td>\n",
" <td>0.194131</td>\n",
" <td>0.827372</td>\n",
" <td>0.345404</td>\n",
" <td>0.291667</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" time air_temperature_mean pressure wind_direction wind_speed\n",
"0 0.000000 0.370203 0.103164 0.732591 0.625000\n",
"1 0.000011 0.322799 0.268912 0.838440 0.354167\n",
"2 0.000022 0.302483 0.709078 0.988858 0.260417\n",
"3 0.000033 0.246050 0.850758 0.239554 0.093750\n",
"4 0.000044 0.194131 0.827372 0.345404 0.291667"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dataset = Normalize_df(pd.read_csv('./dataset-daily.csv'))\n",
"dataset.head()"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0 0.000000\n",
"1 0.000011\n",
"2 0.000022\n",
"3 0.000033\n",
"4 0.000044\n",
" ... \n",
"3648 0.999956\n",
"3649 0.999967\n",
"3650 0.999978\n",
"3651 0.999989\n",
"3652 1.000000\n",
"Name: time, Length: 3653, dtype: float64"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dataset.pop('time')"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"z = np.zeros((6,4))"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [],
"source": [
"for i in range(6):\n",
" z[i,:] = dataset.iloc[i].to_numpy()"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[0.37020316, 0.10316374, 0.73259053, 0.62500003],\n",
" [0.3227991 , 0.26891239, 0.83844011, 0.35416667],\n",
" [0.30248307, 0.70907824, 0.98885794, 0.26041667],\n",
" [0.24604966, 0.85075755, 0.23955432, 0.09375 ],\n",
" [0.19413093, 0.82737157, 0.3454039 , 0.29166667],\n",
" [0.16704289, 0.66712609, 0.33983287, 0.23958333]])"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"z"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"import torch"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [],
"source": [
"t = torch.from_numpy(z)"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"tensor([[0.3702, 0.1032, 0.7326, 0.6250],\n",
" [0.3228, 0.2689, 0.8384, 0.3542],\n",
" [0.3025, 0.7091, 0.9889, 0.2604],\n",
" [0.2460, 0.8508, 0.2396, 0.0938],\n",
" [0.1941, 0.8274, 0.3454, 0.2917],\n",
" [0.1670, 0.6671, 0.3398, 0.2396]])"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"t.type(torch.FloatTensor)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Loading

0 comments on commit 4c75cf8

Please sign in to comment.