Skip to content

Commit

Permalink
revised structure of homework
Browse files Browse the repository at this point in the history
  • Loading branch information
dave-maldonado committed Sep 8, 2014
1 parent 671f2cc commit bee6da4
Show file tree
Hide file tree
Showing 3 changed files with 11 additions and 21 deletions.
Binary file modified hw1.pdf
Binary file not shown.
Binary file modified hw1.synctex.gz
Binary file not shown.
32 changes: 11 additions & 21 deletions hw1.tex
Original file line number Diff line number Diff line change
Expand Up @@ -31,11 +31,6 @@

\section{A question about $\cap$}

\subsection*{Proposition:}
The intersection of a finite set \textbf{S} and an enumerable set \textbf{T} is enumerable.

\bigskip

\begin{lem}Any finite set is enumerable.\end{lem}
\begin{proof}
Let \textbf{S} be a finite set with \textit{n} elements. Let \textbf{K} = \{1,2,\dots,\textit{n}\}.
Expand All @@ -58,7 +53,10 @@ \section{A question about $\cap$}
undefined & \mbox{if } f(x) \notin \textbf{B}. \end{cases} \end{equation*}
\end{proof}

\subsection*{Conclusion:}
\begin{thm}
The intersection of a finite set \textbf{S} and an enumerable set \textbf{T} is enumerable.
\end{thm}

\begin{proof}
By \textbf{Lemma 1.1} the set \textbf{S} is enumerable. By \textbf{Lemma 1.2} the intersection
of \textbf{S} and \textbf{T} is enumerable.
Expand All @@ -70,12 +68,10 @@ \section{A question about $\cap$}

\section{A slightly harder question about $\cap$}

\subsection*{Proposition:}
\begin{thm}
The intersection of an enumerable set of enumerable sets is itself enumerable.
\end{thm}

\bigskip

\subsection*{Conclusion:}
\begin{proof}
Let \textbf{S} be a enumerable set of enumerable sets. Pick a set $\textbf{A} \in \textbf{S}$. Let
\textbf{B} be $\bigcap (\textbf{S} - \textbf{A})$. By \textbf{Lemma 1.2} we can define a function
Expand All @@ -88,13 +84,11 @@ \section{A slightly harder question about $\cap$}

\section{It takes two...}

\subsection*{Proposition:}
\begin{thm}
Let \textbf{F} be the set of all \textit{one to one} functions that both i) have a domain that's a subset of the positive
integers, and ii) are \textit{onto} a two element set \{a,b\}. \textbf{F} is enumerable.

\bigskip

\subsection*{Conclusion:}
\end{thm}

\begin{proof}
We can arrange each function $\mathnormal{f} \in \textbf{F}$ in a two dimensional grid as follows:
\begin{center}
Expand All @@ -117,11 +111,6 @@ \section{It takes two...}

\section{Enumerate all the things!}

\subsection*{Proposition:}
The set of all finite sequences of positive integers is enumerable.

\bigskip

\begin{lem} For any $\mathnormal{n}$, the set of $\mathnormal{n}$-member sequences is enumerable.\end{lem}
\begin{proof}
We proceed by induction. Let $\textbf{A}_{\mathnormal{n}}$ be the set of all n-member sequences of
Expand Down Expand Up @@ -158,7 +147,8 @@ \section{Enumerate all the things!}

\bigskip

\subsection*{Conclusion:}
\begin{thm}The set of all finite sequences of positive integers is enumerable.\end{thm}

\begin{proof}
Let \textbf{A} be a set of sets where each member is a set containing all the $\mathnormal{n}$-member
sequences of a particular $\mathnormal{n}$. Each member of \textbf{A} is enumerable by \textbf{Lemma
Expand Down

0 comments on commit bee6da4

Please sign in to comment.