-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
1,240 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,180 @@ | ||
import torch | ||
import numpy as np | ||
import scipy.io as sio | ||
import matplotlib.pyplot as plt | ||
import time | ||
|
||
from vit_pytorch import VisionTransformer as vits | ||
from utils import plot_roc_curve | ||
from sklearn.metrics.pairwise import cosine_similarity | ||
from sklearn.metrics.pairwise import laplacian_kernel, sigmoid_kernel | ||
from sklearn.metrics.pairwise import pairwise_kernels | ||
from sklearn.metrics import pairwise_distances | ||
|
||
|
||
import moco.builder | ||
|
||
|
||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | ||
|
||
# Sandiego2 189bands AVIRIS | ||
data_name = 'Sandiego2' | ||
# data_name = 'Sandiego100' | ||
# data_name = 'MUUFL' | ||
# data_name = 'Beach4' | ||
|
||
# Sandiego2 | ||
hyperdata_path = './data/' + data_name + '/sandiego.mat' | ||
gdt_path = './data/' + data_name + '/groundtruth.mat' | ||
prior_path = './data/' + data_name + '/prior_target.mat' | ||
hyperdata = sio.loadmat(hyperdata_path)['data'] | ||
hyperdata = hyperdata.reshape(120*120,-1) | ||
hyperdata = hyperdata/1.0 | ||
gdt = sio.loadmat(gdt_path)['gt'] | ||
gdt = gdt.reshape(-1) | ||
prior = sio.loadmat(prior_path)['prior_target'].T | ||
prior = prior/1.0 | ||
|
||
# Sandiego100 | ||
# hyperdata_path = './data/' + data_name + '/sandiego.mat' | ||
# gdt_path = './data/' + data_name + '/groundtruth.mat' | ||
# prior_path = './data/' + data_name + '/prior_target.mat' | ||
# hyperdata = sio.loadmat(hyperdata_path)['data'] | ||
# hyperdata = hyperdata.reshape(100*100,-1) | ||
# hyperdata = hyperdata/1.0 | ||
# gdt = sio.loadmat(gdt_path)['groundtruth'] | ||
# gdt = gdt.reshape(-1) | ||
# prior = sio.loadmat(prior_path)['prior_target'].T | ||
# prior = prior/1.0 | ||
|
||
# MUUFL | ||
# hyperdata_path = './data/' + data_name + '/data.mat' | ||
# gdt_path = './data/' + data_name + '/groundtruth.mat' | ||
# prior_path = './data/' + data_name + '/prior_target.mat' | ||
# hyperdata = sio.loadmat(hyperdata_path)['data'] | ||
# hyperdata = hyperdata.reshape(325*220,-1) | ||
# hyperdata = hyperdata/1.0 | ||
# gdt = sio.loadmat(gdt_path)['groundtruth'] | ||
# gdt = gdt.reshape(-1) | ||
# prior = sio.loadmat(prior_path)['prior_target'].T | ||
# prior = prior/1.0 | ||
|
||
# Beach4 | ||
# hyperdata_path = './data/' + data_name + '/data.mat' | ||
# gdt_path = './data/' + data_name + '/groundtruth.mat' | ||
# prior_path = './data/' + data_name + '/prior_target.mat' | ||
# hyperdata = sio.loadmat(hyperdata_path)['data'] | ||
# hyperdata = hyperdata.reshape(100*120,-1) | ||
# hyperdata = hyperdata/1.0 | ||
# gdt = sio.loadmat(gdt_path)['groundtruth'] | ||
# gdt = gdt.reshape(-1) | ||
# prior = sio.loadmat(prior_path)['prior_target'].T | ||
# prior = prior/1.0 | ||
|
||
def cos_sim(vector_1, vector_2): | ||
return (9*(10**49))**(np.inner(vector_1, vector_2) / (np.linalg.norm(vector_1) * (np.linalg.norm(vector_2)))) | ||
|
||
#Sandiego2 model | ||
v = vits( | ||
img_size=189, | ||
patch_size=9, | ||
embed_dim=128, | ||
depth=2, | ||
num_heads=8, | ||
representation_size=None, | ||
num_classes=128 | ||
) | ||
model = moco.builder.MoCo_ViT(v, dim=128, mlp_dim=256, T=0.07, K=14400, m=0.999) | ||
|
||
|
||
# Sandiego100 | ||
# v = vits( | ||
# img_size=189, | ||
# patch_size=9, | ||
# embed_dim=128, | ||
# depth=2, | ||
# num_heads=8, | ||
# representation_size=None, | ||
# num_classes=128 | ||
# ) | ||
# model = moco.builder.MoCo_ViT(v, dim=128, mlp_dim=256, T=0.07, K=10000, m=0.999) | ||
|
||
|
||
# MUUFL | ||
# v = vits( | ||
# img_size=64, | ||
# patch_size=4, | ||
# embed_dim=128, | ||
# depth=2, | ||
# num_heads=8, | ||
# representation_size=None, | ||
# num_classes=128 | ||
# ) | ||
# model = moco.builder.MoCo_ViT(v, dim=128, mlp_dim=256, T=0.07, K=13000, m=0.999) | ||
|
||
# Beach4 | ||
# v = vits( | ||
# img_size=102, | ||
# patch_size=6, | ||
# embed_dim=128, | ||
# depth=2, | ||
# num_heads=8, | ||
# representation_size=None, | ||
# num_classes=128 | ||
# ) | ||
# model = moco.builder.MoCo_ViT(v, dim=128, mlp_dim=256, T=0.07, K=12000, m=0.999) | ||
|
||
#Sandiego2 | ||
ckpt = torch.load('./save/MCLT/Sandiego2_models/Sandiego2_lr_0.05_bsz_480_temp_0.07_trial_0/ckpt_epoch_50.pth', map_location='cpu') | ||
|
||
state_dict = ckpt['model'] | ||
if torch.cuda.is_available(): | ||
new_state_dict = {} | ||
for k, v in state_dict.items(): | ||
k = k.replace("module.", "") | ||
new_state_dict[k] = v | ||
state_dict = new_state_dict | ||
model = model.cuda() | ||
model.load_state_dict(state_dict) | ||
|
||
start = time.time() | ||
model.eval() | ||
target_detector = [] | ||
feature = [] | ||
prior = torch.FloatTensor(prior) | ||
dataset = torch.FloatTensor(hyperdata) | ||
with torch.no_grad(): | ||
prior = prior.to(device) | ||
dataset = dataset.to(device) | ||
prior_output = model.base_encoder.forward_features(prior) | ||
dataset_out = model.base_encoder.forward_features(dataset) | ||
prior_output = prior_output.cuda().data.cpu().numpy() | ||
dataset_out = dataset_out.cuda().data.cpu().numpy() | ||
target_detector = (9*(10**49))**cosine_similarity(prior_output, dataset_out) | ||
|
||
target_detector = np.array(target_detector).T | ||
max3 = np.amax(target_detector) | ||
min3 = np.amin(target_detector) | ||
target_detector = (target_detector - min3)/(max3 - min3) | ||
|
||
target_detector = (target_detector)**60 # Sandiego100=60; Sandiego2=20; Beach4=20; MUUFL=60 | ||
|
||
end = time.time() | ||
print('running time:', end - start) | ||
|
||
plot_roc_curve(gdt, target_detector, data_name) | ||
|
||
# Sandiego2 | ||
target_detector = np.reshape(target_detector, (120,120)) | ||
|
||
target_detector = target_detector.tolist() | ||
|
||
plt.figure(2) | ||
plt.imshow(target_detector, cmap='afmhot') | ||
plt.axis('off') | ||
pathfigure = './result/' + data_name + '.jpg' | ||
plt.savefig(pathfigure, bbox_inches='tight', pad_inches=0, dpi=600) | ||
plt.show() | ||
|
||
path_target_detector = './result/' + data_name + '.mat' | ||
sio.savemat(path_target_detector, {'detect': target_detector}) |
Oops, something went wrong.