import pandas
url = 'https://raw.githubusercontent.com/deepanshumehtaa/csvfiles/master/xyz.csv'
df = pd.read_csv(url, index_col=0, delimiter=',')
df = df.reset_index()
df.head(5)
use this to access csv file for inbuilt datasets lik iris to load them use
For Seaborn Dataset
iris = sns.load_dataset('iris')
-OR-
from sklearn.datasets import load_iris
iris = load_iris()
data = iris.data
column_names = iris.feature_names
For Pandas
import pandas as pd
df = pd.DataFrame(iris.data, iris.feature_names)
For Sklearn
befor you start with sea born database https://medium.com/@haydar_ai/learning-data-science-day-9-linear-regression-on-boston-housing-dataset-cd62a80775ef
from sklearn.datasets import load_iris
sk_data = load_iris()
print(sk_data)
df = pd.DataFrame(sk_data.data, columns=sk_data.feature_names)
df.head()
Iris is decleared in Sklearn so to convert it into df
For all the Datasets present for ML
import seaborn as sb
df = sns.load_dataset('iris')
print( sns.get_dataset_names() )
To split the data without train_test_split
# splitting the data BUT, not randomly
X =df.drop(['car'], axis=1)
y =df.car
train_index = int(0.8 * len(X))
X_train, X_test = X[:train_index], X[train_index:]
y_train, y_test = y[:train_index], y[train_index:]
. Follow this Documentation for Keras Dataset: https://jovianlin.io/datasets-within-keras/
url = 'https://raw.githubusercontent.com/deepanshumehtaa/csvfiles/master/xyz.csv'
df = pd.read_csv(url, index_col=0, delimiter=',')
df = df.reset_index()
df.head(5)
use this to access csv file for inbuilt datasets lik iris to load them use
For Seaborn Dataset
iris = sns.load_dataset('iris')
-OR-
from sklearn.datasets import load_iris
iris = load_iris()
data = iris.data
column_names = iris.feature_names
For Pandas
import pandas as pd
df = pd.DataFrame(iris.data, iris.feature_names)
For Sklearn
befor you start with sea born database https://medium.com/@haydar_ai/learning-data-science-day-9-linear-regression-on-boston-housing-dataset-cd62a80775ef
from sklearn.datasets import load_iris
sk_data = load_iris()
print(sk_data)
df = pd.DataFrame(sk_data.data, columns=sk_data.feature_names)
df.head()
Iris is decleared in Sklearn so to convert it into df
For all the Datasets present for ML
import seaborn as sb
df = sns.load_dataset('iris')
print( sns.get_dataset_names() )
To split the data without train_test_split
# splitting the data BUT, not randomly
X =df.drop(['car'], axis=1)
y =df.car
train_index = int(0.8 * len(X))
X_train, X_test = X[:train_index], X[train_index:]
y_train, y_test = y[:train_index], y[train_index:]
. Follow this Documentation for Keras Dataset: https://jovianlin.io/datasets-within-keras
import pandas as pd
import requests
from io import StringIO
url = requests.get('https://doc-0g-78docs.googleusercontent.com/docs/securesc/token')
csv_raw = StringIO(url.text)
df = pd.read_csv(csv_raw)
""" !pip install -q kaggle: installing this packageing but quitely with no loading bars
!mkdir -p ~/.kaggle
the command is creating a -p as parent directory if not exist at root(~/)
!cp kaggle.json ~/.kaggle/
copy the api secrete key to main kaggle folder Ensure kaggle.json is in the location ~/.kaggle/kaggle.json to use the API.
!ls ~/.kaggle if present return nothing else error
!chmod 600 /root/.kaggle/kaggle.json -- 600 permissions means that only the owner of the file has full read and write access to it. Once a file permission is set to 600, no one else can access the file.
calling kaggle api with kaggle's python package: !kaggle datasets download -d emmarex/plantdisease """ !pip install -q kaggle !mkdir -p ~/.kaggle !cp <your_key_file>.json ~/.kaggle/ !ls ~/.kaggle !mv '/root/.kaggle/<your_key_file>.json' '/root/.kaggle/kaggle.json' !chmod 600 /root/.kaggle/kaggle.json # set permission
!kaggle datasets download -d devashish0507/big-mart-sales-prediction
!unzip plantdisease.zip