Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Enabled high-performance Automatic Tensor Parallelism (auto TP) for the MoE models on multiple GPUs/HPUs #6964

Open
wants to merge 64 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 1 commit
Commits
Show all changes
64 commits
Select commit Hold shift + click to select a range
c9b12af
Reduced the experts allreduce number per layer to ONCE for the Qwen2-…
gyou2021 Jan 21, 2025
590ea36
Fixed format
gyou2021 Jan 21, 2025
889c275
Removed print
gyou2021 Jan 21, 2025
2ec6c34
Fix a bug about set.
gyou2021 Jan 21, 2025
504d696
Add the missing view operations from sequence parallel(async). (#6750)
inkcherry Jan 21, 2025
c266dc9
Update `torch.norm` to `torch.linalg.norm` and `torch.linalg.vector_n…
loadams Jan 21, 2025
ae12993
Using explicit GPU upcast for ZeRO-Offload (#6962)
xylian86 Jan 21, 2025
deb09a3
Update version.txt after 0.16.3 release (#6965)
loadams Jan 21, 2025
128d436
Precisely track nvme optimizer offload (#6963)
tjruwase Jan 23, 2025
864472b
Update build_win.bat script to exclue GDS op as it lacks Windows supp…
loadams Jan 24, 2025
1ac398c
Add CUDA 12.8 support and comment on CUDA 12.7 (#6975)
loadams Jan 28, 2025
eda53d8
Update torch versions to support 2.6 (#6977)
loadams Jan 29, 2025
112a7c6
generalize deepspeed linear and implement it for non cuda systems (#6…
oelayan7 Jan 29, 2025
7d2c5fe
Update recommended Windows whl building versions (#6983)
loadams Jan 30, 2025
f1d326c
Title: Fix setup_env_ranks to Properly Set Environment Variables Inst…
fabiosanger Jan 30, 2025
46545d7
Specify torchvision in nv-ds-chat workflow (prevents errors with torc…
loadams Jan 30, 2025
af1ba94
Remove assumption that padding only occurs on last rank (#6974)
xylian86 Jan 31, 2025
e235921
Use ds-specific module id to avoid conflicts (#6847)
tjruwase Jan 31, 2025
f5e9796
Update A6000 workflows to use newer docker container - 24.09 vs 24.03…
loadams Jan 31, 2025
07634b9
Allow NVIDIA Blackwell (#6991)
fabiendupont Feb 4, 2025
0e57fa0
Update GH org references (#6998)
tjruwase Feb 5, 2025
e86c0c3
Update CNAME
loadams Feb 5, 2025
0d7f0eb
Update CNAME
loadams Feb 5, 2025
cd8a988
[XPU] max1100 workflow update for docker and softwares (#7003)
Liangliang-Ma Feb 5, 2025
18c712f
autotp training(fix dco) (#7004)
inkcherry Feb 5, 2025
c5bf6f6
import triton files when triton is supported and installed (#6989)
oelayan7 Feb 6, 2025
590de5f
Update A6000 tests transformers version (#7016)
loadams Feb 8, 2025
693c39f
Fix ds-chat CI regression (#7015)
tjruwase Feb 10, 2025
322a05a
[Ulysses tutorial] typos (#7024)
stas00 Feb 11, 2025
8869d78
fix hostname -I for macOS #6497 (#6990)
fitzjalen Feb 12, 2025
e4d03af
Update workflows to cuda 12.4 (#7000)
loadams Feb 12, 2025
8c6251d
[ROCm] Enable fp_quantizer on ROCm (#7027)
rraminen Feb 13, 2025
e3e179c
add gds chinese blog (#7034)
GuanhuaWang Feb 13, 2025
fd2787b
Add chinese blog for deepspeed windows, and fix format (#7035)
hwchen2017 Feb 14, 2025
ba8ef57
AIO on ROCM (#7023)
jomayeri Feb 14, 2025
f4b0f58
Control trace cache warnings (#7039)
tjruwase Feb 18, 2025
3ca3e2f
Update CUDA compute capability to support Blackwell (#7047)
hwchen2017 Feb 18, 2025
5612778
Update setup.py handling of ROCm cupy (#7051)
loadams Feb 19, 2025
af8c190
nv-ds-chat breaks with latest transformers (#7052)
loadams Feb 19, 2025
225471a
Rename aio_thread_count to intra_op_parallelism (#7056)
tjruwase Feb 19, 2025
1df293a
add autoTP training zero2 tests (#7049)
inkcherry Feb 19, 2025
94abf68
Fix, bf16 optimizer remove dup loop (#7054)
wukong1992 Feb 20, 2025
4a4ff9b
Update version.txt after 0.16.4 release (#7063)
loadams Feb 20, 2025
e5eda47
fix an outdated doc wrt CUDA_VISIBLE_DEVICES (#7058)
stas00 Feb 20, 2025
675ec9a
Tecorigin sdaa accelerator (#6903)
siqi654321 Feb 20, 2025
81c1fee
Handle special case of libuv for Windows (#7064)
loadams Feb 20, 2025
17f544c
Update README with info on newest accelerator (#7065)
loadams Feb 21, 2025
20fd872
Bug Fix for offload_states API (#7050)
U-rara Feb 21, 2025
0b289a2
Fix TOCTOU issues, switch to fstat (#7067)
loadams Feb 24, 2025
4a86d02
config torch to avoid graph breaks caused by logger (#6999)
ShellyNR Feb 24, 2025
594b5bb
Fix meta load tensor imcompatible issue (#7073)
Yejing-Lai Feb 24, 2025
a843e39
Replace calls to `python setup.py sdist` with `python -m build --sdis…
loadams Feb 24, 2025
4cbc52c
Revert "Handle special case of libuv for Windows (#7064)" (#7076)
loadams Feb 25, 2025
586e436
Add DeepseekV3 AutoTP. (#7045)
Yejing-Lai Feb 26, 2025
5e379ad
Improve inference tutorial docs (#7083)
loadams Feb 26, 2025
13bf866
Added support for the environment variable DS_MOE_EXPERTS_REDUCE_ONCE…
gyou2021 Feb 27, 2025
d5115be
Changed env variable name to 'DS_MOE_TP_SINGLE_ALLREDUCE'
gyou2021 Feb 28, 2025
f0044cb
Pin transformers version on tests that use latest. (#7085)
loadams Feb 27, 2025
16ad5fd
Update README.md with ICS '23 MoE paper link (#7087)
siddharth9820 Feb 27, 2025
47d4420
Update parallelism for nv-torch-latest/nightly tests due to more GPUs…
loadams Feb 27, 2025
b3c64dd
Remove workflows for very old torch versions (#7090)
loadams Feb 28, 2025
9b1fe98
Fixed conflicts
gyou2021 Feb 28, 2025
6b96dd9
Update auto_tp.py
gyou2021 Mar 5, 2025
e7883e7
Merge branch 'master' into autoTP_Qwen2Moe_DeepSeekv2
hwchen2017 Mar 5, 2025
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
Tecorigin sdaa accelerator (#6903)
Description
This PR includes Tecorigin SDAA accelerator support.
With this PR, DeepSpeed supports SDAA as backend for training tasks.

---------

Signed-off-by: siqi <[email protected]>
Co-authored-by: siqi <[email protected]>
Co-authored-by: Olatunji Ruwase <[email protected]>
Co-authored-by: Logan Adams <[email protected]>
Signed-off-by: gyou2021 <[email protected]>
  • Loading branch information
4 people authored and gyou2021 committed Feb 28, 2025
commit 675ec9af95af5a5b90319a5b4adc6e567916f6cc
19 changes: 18 additions & 1 deletion accelerator/real_accelerator.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@
except ImportError as e:
dsa2 = None

SUPPORTED_ACCELERATOR_LIST = ['cuda', 'cpu', 'xpu', 'xpu.external', 'npu', 'mps', 'hpu', 'mlu']
SUPPORTED_ACCELERATOR_LIST = ['cuda', 'cpu', 'xpu', 'xpu.external', 'npu', 'mps', 'hpu', 'mlu', 'sdaa']

ds_accelerator = None

Expand Down Expand Up @@ -80,6 +80,12 @@ def get_accelerator():
except ImportError as e:
raise ValueError(f"NPU_Accelerator requires torch_npu, which is not installed on this system.")
pass
elif accelerator_name == "sdaa":
try:
import torch_sdaa # noqa: F401 # type: ignore
except ImportError as e:
raise ValueError(f"SDAA_Accelerator requires torch_sdaa, which is not installed on this system.")
pass
elif accelerator_name == "mps":
try:
import torch.mps
Expand Down Expand Up @@ -137,6 +143,13 @@ def get_accelerator():
accelerator_name = "npu"
except ImportError as e:
pass
if accelerator_name is None:
try:
import torch_sdaa # noqa: F401,F811 # type: ignore

accelerator_name = "sdaa"
except ImportError as e:
pass
if accelerator_name is None:
try:
import torch.mps
Expand Down Expand Up @@ -205,6 +218,10 @@ def get_accelerator():
from .npu_accelerator import NPU_Accelerator

ds_accelerator = NPU_Accelerator()
elif accelerator_name == "sdaa":
from .sdaa_accelerator import SDAA_Accelerator

ds_accelerator = SDAA_Accelerator()
elif accelerator_name == "mps":
from .mps_accelerator import MPS_Accelerator

Expand Down
328 changes: 328 additions & 0 deletions accelerator/sdaa_accelerator.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,328 @@
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# BSD 3- Clause License Copyright (c) 2023, Tecorigin Co., Ltd. All rights
# reserved.
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
# Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
# Neither the name of the copyright holder nor the names of its contributors
# may be used to endorse or promote products derived from this software
# without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION)
# HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
# STRICT LIABILITY,OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
# WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
# OF SUCH DAMAGE.

# DeepSpeed Team

import importlib
import inspect
import functools

from .abstract_accelerator import DeepSpeedAccelerator
# During setup stage torch may not be installed, pass on no torch will
# allow op builder related API to be executed.
try:
import torch.sdaa
except ImportError:
pass


class SDAA_Accelerator(DeepSpeedAccelerator):

def __init__(self):
self._name = 'sdaa'
self._communication_backend_name = 'tccl'
self._compile_backend = "inductor"
self.class_dict = None

def is_synchronized_device(self):
return False

def use_host_timers(self):
return self.is_synchronized_device()

def resolves_data_dependency(self):
return self.is_synchronized_device()

def handles_memory_backpressure(self):
return self.is_synchronized_device()

# Device APIs
def device_name(self, device_index=None):
if device_index is None:
return 'sdaa'
return 'sdaa:{}'.format(device_index)

def device(self, device_index=None):
return torch.sdaa.device(device_index)

def set_device(self, device_index):
torch.sdaa.set_device(device_index)

def current_device(self):
return torch.sdaa.current_device()

def current_device_name(self):
return 'sdaa:{}'.format(torch.sdaa.current_device())

def device_count(self):
return torch.sdaa.device_count()

def synchronize(self, device_index=None):
return torch.sdaa.synchronize(device_index)

# RNG APIs
def random(self):
return torch.random

def set_rng_state(self, new_state, device_index=None):
if device_index is None:
return torch.sdaa.set_rng_state(new_state)

return torch.sdaa.set_rng_state(new_state, device_index)

def get_rng_state(self, device_index=None):
if device_index is None:
return torch.sdaa.get_rng_state()

return torch.sdaa.get_rng_state(device_index)

def manual_seed(self, seed):
return torch.sdaa.manual_seed(seed)

def manual_seed_all(self, seed):
return torch.sdaa.manual_seed_all(seed)

def initial_seed(self):
return torch.sdaa.initial_seed()

def default_generator(self, device_index):
return torch.sdaa.default_generators[device_index]

# Streams/Events
@property
def Stream(self):
return torch.sdaa.Stream

def stream(self, stream):
return torch.sdaa.stream(stream)

def current_stream(self, device_index=None):
return torch.sdaa.current_stream(device_index)

def default_stream(self, device_index=None):
return torch.sdaa.default_stream(device_index)

@property
def Event(self):
return torch.sdaa.Event

# Memory management
def empty_cache(self):
return torch.sdaa.empty_cache()

def memory_allocated(self, device_index=None):
return torch.sdaa.memory_allocated(device_index)

def max_memory_allocated(self, device_index=None):
return torch.sdaa.max_memory_allocated(device_index)

def reset_max_memory_allocated(self, device_index=None):
return torch.sdaa.reset_max_memory_allocated(device_index)

def memory_cached(self, device_index=None):
return torch.sdaa.memory_cached(device_index)

def max_memory_cached(self, device_index=None):
return torch.sdaa.max_memory_cached(device_index)

def reset_max_memory_cached(self, device_index=None):
return torch.sdaa.reset_max_memory_cached(device_index)

def memory_stats(self, device_index=None):
if hasattr(torch.sdaa, 'memory_stats'):
return torch.sdaa.memory_stats(device_index)

def reset_peak_memory_stats(self, device_index=None):
if hasattr(torch.sdaa, 'reset_peak_memory_stats'):
return torch.sdaa.reset_peak_memory_stats(device_index)

def memory_reserved(self, device_index=None):
if hasattr(torch.sdaa, 'memory_reserved'):
return torch.sdaa.memory_reserved(device_index)

def max_memory_reserved(self, device_index=None):
if hasattr(torch.sdaa, 'max_memory_reserved'):
return torch.sdaa.max_memory_reserved(device_index)

def total_memory(self, device_index=None):
return torch.sdaa.get_device_properties(device_index).total_memory

def available_memory(self, device_index=None):
return self.total_memory(device_index) - self.memory_allocated(device_index)

# Data types
def is_bf16_supported(self):
return torch.sdaa.is_bf16_supported()

def is_fp16_supported(self):
return True

def supported_dtypes(self):
supported_dtypes = [torch.float]
if self.is_fp16_supported():
supported_dtypes.append(torch.half)
if self.is_bf16_supported():
supported_dtypes.append(torch.bfloat16)
return supported_dtypes

# Misc
def amp(self):
if hasattr(torch.sdaa, 'amp'):
return torch.sdaa.amp
return None

def is_available(self):
return torch.sdaa.is_available()

def range_push(self, msg):
return

def range_pop(self):
return

def lazy_call(self, callback):
return torch.sdaa._lazy_call(callback)

def communication_backend_name(self):
return self._communication_backend_name

def is_triton_supported(self):
return False

# Graph operations
def create_graph(self):
return None

def capture_to_graph(self, graph, pool=None, stream=None):
from deepspeed.runtime.utils import noop_context
return noop_context()

def replay_graph(self, graph):
return

# Tensor operations

@property
def BFloat16Tensor(self):
return functools.partial(torch.tensor, dtype=torch.bfloat16, device='sdaa')

@property
def ByteTensor(self):
return functools.partial(torch.tensor, dtype=torch.uint8, device='sdaa')

@property
def DoubleTensor(self):
return functools.partial(torch.tensor, dtype=torch.double, device='sdaa')

@property
def FloatTensor(self):
return functools.partial(torch.tensor, dtype=torch.float, device='sdaa')

@property
def HalfTensor(self):
return functools.partial(torch.tensor, dtype=torch.half, device='sdaa')

@property
def IntTensor(self):
return functools.partial(torch.tensor, dtype=torch.int, device='sdaa')

@property
def LongTensor(self):
return functools.partial(torch.tensor, dtype=torch.long, device='sdaa')

def pin_memory(self, tensor, align_bytes=1):
return tensor.pin_memory()

def is_pinned(self, tensor):
return tensor.is_pinned()

def on_accelerator(self, tensor):
device_str = str(tensor.device)
if device_str.startswith('sdaa:'):
return True
else:
return False

def op_builder_dir(self):
try:
# is op_builder from deepspeed or a 3p version? this should only succeed if it's deepspeed
# if successful this also means we're doing a local install and not JIT compile path
from op_builder import __deepspeed__ # noqa: F401 # type: ignore
return "op_builder.sdaa"
except ImportError:
return "deepspeed.ops.op_builder.sdaa"

def _lazy_init_class_dict(self):
if self.class_dict:
return

op_builder_module = importlib.import_module(self.op_builder_dir())

# get op builder class from op_builder/sdaa/__init__.py
self.class_dict = {}
for class_name, class_obj in inspect.getmembers(op_builder_module, inspect.isclass):
self.class_dict[class_name] = class_obj

# create an instance of op builder and return, name specified by class_name
def create_op_builder(self, class_name):
builder_class = self.get_op_builder(class_name)
return builder_class()

# return an op builder class, name specified by class_name
def get_op_builder(self, class_name):
self._lazy_init_class_dict()
if class_name in self.class_dict:
return self.class_dict[class_name]
else:
return self.class_dict['NotImplementedBuilder']

def build_extension(self):
from torch.utils.cpp_extension import BuildExtension
return BuildExtension

def export_envs(self):
return ['NCCL', 'LD_LIBRARY', 'PATH']

def visible_devices_envs(self):
return ['SDAA_VISIBLE_DEVICES']

def set_visible_devices_envs(self, current_env, local_accelerator_ids):
for env in self.visible_devices_envs():
current_env[env] = ",".join(map(str, local_accelerator_ids))

def get_compile_backend(self):
return self._compile_backend

def set_compile_backend(self, backend):
supported_backends = torch._dynamo.list_backends(exclude_tags=())
if backend in supported_backends:
self._compile_backend = backend
else:
raise ValueError(
f"{backend} not supported by {self.device_name()}. Supported Backends are {supported_backends}")
Loading