-
Notifications
You must be signed in to change notification settings - Fork 4.3k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[Draft] Add support for seq split in Domino #7111
base: master
Are you sure you want to change the base?
Conversation
Hi @duanhx1037 Really appreciated your quick action on this effort! But right now it is far from ready. Please allow me to change the title to |
layernorm_output = torch.concat([layernorm_output0, layernorm_output1], dim=0) | ||
mixed_x_layer, _ = self.query_key_value(layernorm_output) | ||
|
||
# [s, b, np * 3 * hn] --> [s, b, np, 3 * hn] | ||
new_tensor_shape = mixed_x_layer.size()[:-1] + ( | ||
self.num_attention_heads_per_partition, | ||
3 * self.hidden_size_per_attention_head, | ||
) | ||
mixed_x_layer = mixed_x_layer.view(*new_tensor_shape) | ||
|
||
# [s, b, np, 3 * hn] -> [b, np, s, 3*hn] | ||
mixed_x_layer = mixed_x_layer.permute(1, 2, 0, 3).contiguous() | ||
# [s, b, np, 3 * hn] --> [s, b, np, hn], [s, b, np, hn], [s, b, np, hn] | ||
(query_layer, key_layer, value_layer) = torch.split(mixed_x_layer, [ | ||
self.hidden_size_per_attention_head, self.hidden_size_per_attention_head, | ||
self.hidden_size_per_attention_head | ||
], dim=3) | ||
|
||
# [s, b, np, np * hn] -> [s, b, np, hn] | ||
query_layer = query_layer.view(query_layer.size(0), query_layer.size(1), -1, | ||
self.hidden_size_per_attention_head) | ||
|
||
if rotary_pos_emb is not None: | ||
if isinstance(rotary_pos_emb, tuple): | ||
rotary_pos_emb = rotary_pos_emb | ||
else: | ||
rotary_pos_emb = ((rotary_pos_emb, ) * 2) | ||
q_pos_emb, k_pos_emb = rotary_pos_emb | ||
query_layer = self.apply_rotary_pos_emb(query_layer, q_pos_emb) | ||
key_layer = self.apply_rotary_pos_emb(key_layer, k_pos_emb) | ||
|
||
batchsize, num_heads, seq_len, hidden_per_head = query_layer.shape[0], query_layer.shape[1], query_layer.shape[2], query_layer.shape[3] | ||
|
||
# seq 0: core attention | ||
context_layer0 = self.self_attention_sp(query_layer[:, :, :seq_len//2, :], key_layer, value_layer, attention_mask[:, :, :seq_len//2, :]) | ||
# Output. [s, b, h] | ||
attention_output0, attention_bias0 = self.dense(context_layer0) | ||
|
||
handle0 = dist.all_reduce(attention_output0, group=self.mpu.get_tensor_model_parallel_group(), async_op=True) | ||
|
||
# seq 1: core attention | ||
context_layer1 = self.self_attention_sp(query_layer[:, :, seq_len//2:, :], key_layer, value_layer, attention_mask[:, :, seq_len//2:, :]) | ||
# Output. [s, b, h] | ||
attention_output1, attention_bias1 = self.dense(context_layer1) | ||
|
||
handle1 = dist.all_reduce(attention_output1, group=self.mpu.get_tensor_model_parallel_group(), async_op=True) | ||
handle0.wait() |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
these are exactly the same as sharedAttention forward, I don't see why we need these duplication here.
Also please follow our current code hierarchy, not pull up lower layer module implementation code to upper layer module.
e.g., if any real change need to make on sharedAttention
, create a similar module say XYZAttention
, then here in DominoTransformerLayer
forward function, we can simply call XYZAttention
module without duplicating XYZAttention module's every line of code of its forward.
elif self.input_split_dim == "seq": | ||
query_projection_size = config.kv_channels * config.num_attention_heads | ||
kv_projection_size = config.kv_channels * config.num_attention_heads | ||
|
||
# Per attention head and per partition values. | ||
world_size = mpu.get_tensor_model_parallel_world_size() | ||
self.hidden_size_per_attention_head = query_projection_size // config.num_attention_heads | ||
self.num_attention_heads_per_partition = config.num_attention_heads // world_size | ||
self.query_key_value = ColumnParallelLinear(config.hidden_size, | ||
query_projection_size + 2 * kv_projection_size, | ||
config=config, | ||
init_method=config.init_method, | ||
bias=config.add_bias_linear, | ||
gather_output=False) | ||
self.self_attention_sp = CoreAttention(config, self.layer_number, mpu, self_attn_mask_type) | ||
self.dense = RowParallelLinearNoComm(query_projection_size, | ||
config.hidden_size, | ||
config=config, | ||
init_method=config.output_layer_init_method, | ||
bias=config.add_bias_linear, | ||
input_is_parallel=True, | ||
skip_bias_add=True) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
this is duplication of shardedAttention module's detail implementation.
No description provided.