Skip to content

desco-test/timeseries_fastai

 
 

Repository files navigation

timeseries_fastai

This repository aims to implement TimeSeries classification/regression algorithms. It makes extensive use of fastai V2!

Installation

You will need to install fastai V2 from here and then you can do from within the environment where you installed fastai V2:

pip install timeseries_fastai

and you are good to go.

TL;DR

git clone https://github.com/fastai/fastai
cd fastai
conda env create -f environment.yml
source activate fastai
pip install fastai timeseries_fastai

Time Series Classification from Scratch with Deep Neural Networks: A Strong Baseline

The original paper repo is here is implemented in Keras/Tf.

InceptionTime: Finding AlexNet for Time SeriesClassification

The original paper repo is here

Results

You can run the benchmark using:

$python ucr.py --arch='inception' --tasks='all' --filename='inception.csv' --mixup=0.2

Default Values:

  • lr = 1e-3
  • opt = 'ranger'
  • epochs = 40
  • fp16 = True
import pandas as pd
from pathlib import Path
results_inception = pd.read_csv(Path.cwd().parent/'inception.csv', index_col=0)
results_inception.head(10)
<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
</style>
acc acc_max train_loss val_loss
task
ACSF1 0.82 0.85 0.77 0.62
Adiac 0.77 0.77 0.81 0.89
ArrowHead 0.70 0.76 0.28 1.21
BME 0.85 0.88 0.21 0.79
Beef 0.77 0.83 0.50 0.53
BeetleFly 0.70 0.85 0.14 0.79
BirdChicken 0.95 0.95 0.14 0.20
CBF 0.95 0.97 0.22 0.24
Car 0.60 0.68 0.33 1.23
Chinatown 0.95 0.96 0.05 0.27

Getting Started

from timeseries_fastai.imports import *
from timeseries_fastai.core import *
from timeseries_fastai.data import *
from timeseries_fastai.models import *
PATH = Path.cwd().parent
df_train, df_test = load_df_ucr(PATH, 'Adiac')
Loading files from: /home/tcapelle/SteadySun/timeseries_fastai/Adiac
x_cols = df_train.columns[0:-2].to_list()
dls = TSDataLoaders.from_dfs(df_train, df_test, x_cols=x_cols, label_col='target', bs=16)
dls.show_batch()

png

inception = create_inception(1, len(dls.vocab))
learn = Learner(dls, inception, metrics=[accuracy])
learn.fit_one_cycle(1, 1e-3)
epoch train_loss valid_loss accuracy time
0 3.939292 3.701253 0.025575 00:01

About

fastai V2 implementation of Timeseries classification papers.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 95.5%
  • Python 4.5%