-
Notifications
You must be signed in to change notification settings - Fork 27
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
desire2020
committed
Nov 18, 2018
1 parent
3707088
commit ace616c
Showing
4 changed files
with
149 additions
and
16 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,2 +1,4 @@ | ||
__pycache__ | ||
save/*.txt | ||
save/*.txt | ||
saved_model | ||
.idea |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,119 @@ | ||
import tensorflow as tf | ||
from tensorflow.contrib.cudnn_rnn.python.layers.cudnn_rnn import CudnnLSTM, CUDNN_RNN_BIDIRECTION | ||
from tensorflow.contrib import layers | ||
class Critic(object): | ||
def __call__(self, h): | ||
# sequence -> [b, l, v] | ||
_, l, v = h.get_shape().as_list() | ||
h = tf.reshape(h, [-1, l, 1, v]) | ||
with tf.variable_scope("textmover", reuse=tf.AUTO_REUSE): | ||
h0 = layers.convolution2d( | ||
h, v, [4, 1], [2, 1], | ||
activation_fn=tf.nn.softplus | ||
) | ||
h1 = layers.convolution2d( | ||
h0, v, [4, 1], [1, 1], | ||
activation_fn=tf.nn.softplus | ||
) | ||
h2 = layers.convolution2d( | ||
h1, v, [4, 1], [2, 1], | ||
activation_fn=tf.nn.softplus | ||
) | ||
h = layers.flatten(h2) | ||
h = layers.fully_connected( | ||
h, 1, activation_fn=tf.identity | ||
) | ||
return h | ||
|
||
class Mediator(object): | ||
def __init__(self, num_emb, batch_size, emb_dim, hidden_dim, | ||
sequence_length, start_token, | ||
learning_rate=1e-3, reward_gamma=0.95, name="mediator", dropout_rate=0.5, with_professor_forcing=False): | ||
self.num_emb = num_emb | ||
# self.batch_size = batch_size | ||
self.emb_dim = emb_dim | ||
self.hidden_dim = hidden_dim | ||
self.sequence_length = sequence_length | ||
self.learning_rate = tf.Variable(float(learning_rate), trainable=False) | ||
self.reward_gamma = reward_gamma | ||
self.g_params = [] | ||
self.d_params = [] | ||
self.temperature = 1.0 | ||
self.name = name | ||
self.dropout_keep_rate = tf.Variable(float(1.0), trainable=False) | ||
self.dropout_on = self.dropout_keep_rate.assign(dropout_rate) | ||
self.dropout_off = self.dropout_keep_rate.assign(1.0) | ||
self.expected_reward = tf.Variable(tf.zeros([self.sequence_length])) | ||
|
||
self.x0 = tf.placeholder(tf.int32, shape=[None, self.sequence_length]) | ||
self.x = self.x0 | ||
self.x1 = tf.placeholder(tf.int32, shape=[None, self.sequence_length]) | ||
input_x0 = tf.pad(self.x0, [[0, 0], [1, 0]])[:, 0:self.sequence_length] | ||
input_x1 = tf.pad(self.x1, [[0, 0], [1, 0]])[:, 0:self.sequence_length] | ||
output_x0 = tf.one_hot( | ||
self.x0, self.num_emb, on_value=1.0, off_value=0.0 | ||
) | ||
output_x1 = tf.one_hot( | ||
self.x1, self.num_emb, on_value=1.0, off_value=0.0 | ||
) | ||
with tf.variable_scope(name, reuse=tf.AUTO_REUSE): | ||
embedding = tf.get_variable( | ||
name="word_embeddings", | ||
initializer=tf.random_normal(shape=[self.num_emb, self.emb_dim], stddev=0.1) | ||
) | ||
Wo = tf.get_variable( | ||
name="Weight_output", | ||
initializer=tf.random_normal(shape=[self.hidden_dim, self.num_emb], stddev=0.1) | ||
) | ||
bo = tf.get_variable( | ||
name="bias_output", | ||
initializer=tf.random_normal(shape=[self.num_emb], stddev=0.1) | ||
) | ||
rnn = CudnnLSTM( | ||
num_layers=1, | ||
num_units=self.hidden_dim, | ||
kernel_initializer=tf.orthogonal_initializer() | ||
) | ||
def language_modeling(input_x): | ||
with tf.variable_scope("language_model", reuse=tf.AUTO_REUSE): | ||
emb_x = tf.nn.embedding_lookup( | ||
embedding, input_x | ||
) | ||
emb_x = tf.transpose(emb_x, [1, 0, 2]) | ||
h, _ = rnn(emb_x) | ||
h = tf.transpose(h, [1, 0, 2]) | ||
h = tf.nn.dropout(h, self.dropout_keep_rate) | ||
pred = tf.nn.log_softmax( | ||
tf.reshape(h, [-1, self.hidden_dim]) @ Wo + bo, | ||
axis=-1) | ||
return h, tf.reshape(pred, [-1, self.sequence_length, self.num_emb]) | ||
self.h0, self.log_predictions = language_modeling(input_x0) | ||
self.h1, self.log_predictions_ = language_modeling(input_x1) | ||
self.likelihood_loss = -tf.reduce_mean( | ||
tf.reduce_sum( | ||
self.log_predictions * output_x0 + | ||
self.log_predictions_ * output_x1, axis=-1) | ||
) / 2.0 | ||
self.m_opt = tf.train.AdamOptimizer(learning_rate, beta1=0.9, beta2=0.95) | ||
if with_professor_forcing: | ||
with tf.variable_scope("professor_forcing", reuse=tf.AUTO_REUSE): | ||
critic = Critic() | ||
myu = tf.random_uniform(shape=[tf.shape(self.x0)[0], self.sequence_length, 1], | ||
minval=0.0, maxval=1.0) | ||
hybrid = self.h0 * myu + self.h1 * (1.0 - myu) | ||
gp = tf.reduce_mean(tf.nn.relu(tf.norm( | ||
tf.reshape(tf.gradients(critic(hybrid), [hybrid])[0], [tf.shape(self.x0)[0], -1]), | ||
axis=-1) - 1.0) ** 2) | ||
self.d_loss = tf.reduce_mean(critic(self.h0) - critic(self.h1)) | ||
self.d_opt = tf.train.AdamOptimizer(1e-4, beta1=0.5, beta2=0.9) | ||
self.d_params = [v for v in tf.trainable_variables() if "professor_forcing" in v.name] | ||
self.d_update = self.d_opt.minimize(self.d_loss + 5.0 * gp, var_list=self.d_params) | ||
self.m_params = [v for v in tf.trainable_variables() if name in v.name] | ||
if not with_professor_forcing: | ||
self.likelihood_updates = self.m_opt.minimize(self.likelihood_loss, var_list=self.m_params) | ||
else: | ||
self.likelihood_updates = self.m_opt.minimize(self.likelihood_loss - self.d_loss, var_list=self.m_params) | ||
|
||
def get_reward(self, sess, x): | ||
output = sess.run(self.log_predictions, feed_dict={self.x0: x}) | ||
return output |