Skip to content

๐Ÿฆ… Pretrained BigBird Model for Korean (up to 4096 tokens)

License

Notifications You must be signed in to change notification settings

dobbytk/KoBigBird

ย 
ย 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

1 Commit
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

Pretrained BigBird Model for Korean

What is BigBird โ€ข How to Use โ€ข Pretraining โ€ข Evaluation Result โ€ข Docs โ€ข Citation

ํ•œ๊ตญ์–ด | English

Apache 2.0 Issues linter

What is BigBird?

BigBird: Transformers for Longer Sequences์—์„œ ์†Œ๊ฐœ๋œ sparse-attention ๊ธฐ๋ฐ˜์˜ ๋ชจ๋ธ๋กœ, ์ผ๋ฐ˜์ ์ธ BERT๋ณด๋‹ค ๋” ๊ธด sequence๋ฅผ ๋‹ค๋ฃฐ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.

๐Ÿฆ… Longer Sequence - ์ตœ๋Œ€ 512๊ฐœ์˜ token์„ ๋‹ค๋ฃฐ ์ˆ˜ ์žˆ๋Š” BERT์˜ 8๋ฐฐ์ธ ์ตœ๋Œ€ 4096๊ฐœ์˜ token์„ ๋‹ค๋ฃธ

โฑ๏ธ Computational Efficiency - Full attention์ด ์•„๋‹Œ Sparse Attention์„ ์ด์šฉํ•˜์—ฌ O(n2)์—์„œ O(n)์œผ๋กœ ๊ฐœ์„ 

How to Use

  • ๐Ÿค— Huggingface Hub์— ์—…๋กœ๋“œ๋œ ๋ชจ๋ธ์„ ๊ณง๋ฐ”๋กœ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค:)
  • ์ผ๋ถ€ ์ด์Šˆ๊ฐ€ ํ•ด๊ฒฐ๋œ transformers>=4.11.0 ์‚ฌ์šฉ์„ ๊ถŒ์žฅํ•ฉ๋‹ˆ๋‹ค. (MRC ์ด์Šˆ ๊ด€๋ จ PR)
  • BigBirdTokenizer ๋Œ€์‹ ์— BertTokenizer ๋ฅผ ์‚ฌ์šฉํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค. (AutoTokenizer ์‚ฌ์šฉ์‹œ BertTokenizer๊ฐ€ ๋กœ๋“œ๋ฉ๋‹ˆ๋‹ค.)
  • ์ž์„ธํ•œ ์‚ฌ์šฉ๋ฒ•์€ BigBird Tranformers documentation์„ ์ฐธ๊ณ ํ•ด์ฃผ์„ธ์š”.
from transformers import AutoModel, AutoTokenizer

model = AutoModel.from_pretrained("monologg/kobigbird-bert-base")  # BigBirdModel
tokenizer = AutoTokenizer.from_pretrained("monologg/kobigbird-bert-base")  # BertTokenizer

Pretraining

์ž์„ธํ•œ ๋‚ด์šฉ์€ [Pretraining BigBird] ์ฐธ๊ณ 

Hardware Max len LR Batch Train Step Warmup Step
KoBigBird-BERT-Base TPU v3-8 4096 1e-4 32 2M 20k
  • ๋ชจ๋‘์˜ ๋ง๋ญ‰์น˜, ํ•œ๊ตญ์–ด ์œ„ํ‚ค, Common Crawl, ๋‰ด์Šค ๋ฐ์ดํ„ฐ ๋“ฑ ๋‹ค์–‘ํ•œ ๋ฐ์ดํ„ฐ๋กœ ํ•™์Šต
  • ITC (Internal Transformer Construction) ๋ชจ๋ธ๋กœ ํ•™์Šต (ITC vs ETC)

Evaluation Result

1. Short Sequence (<=512)

์ž์„ธํ•œ ๋‚ด์šฉ์€ [Finetune on Short Sequence Dataset] ์ฐธ๊ณ 

NSMC
(acc)
KLUE-NLI
(acc)
KLUE-STS
(pearsonr)
Korquad 1.0
(em/f1)
KLUE MRC
(em/rouge-w)
KoELECTRA-Base-v3 91.13 86.87 93.14 85.66 / 93.94 59.54 / 65.64
KLUE-RoBERTa-Base 91.16 86.30 92.91 85.35 / 94.53 69.56 / 74.64
KoBigBird-BERT-Base 91.18 87.17 92.61 87.08 / 94.71 70.33 / 75.34

2. Long Sequence (>=1024)

์ž์„ธํ•œ ๋‚ด์šฉ์€ [Finetune on Long Sequence Dataset] ์ฐธ๊ณ 

TyDi QA
(em/f1)
Korquad 2.1
(em/f1)
Fake News
(f1)
Modu Sentiment
(f1-macro)
KLUE-RoBERTa-Base 76.80 / 78.58 55.44 / 73.02 95.20 42.61
KoBigBird-BERT-Base 79.13 / 81.30 67.77 / 82.03 98.85 45.42

Docs

Citation

KoBigBird๋ฅผ ์‚ฌ์šฉํ•˜์‹ ๋‹ค๋ฉด ์•„๋ž˜์™€ ๊ฐ™์ด ์ธ์šฉํ•ด์ฃผ์„ธ์š”.

@misc{park2021kobigbird,
  author       = {Jangwon Park, Donggyu Kim},
  title        = {KoBigBird: Pretrained BigBird Model for Korean},
  year         = {2021},
  publisher    = {GitHub},
  journal      = {GitHub repository},
  howpublished = {\url{https://github.com/monologg/KoBigBird}}
}

Contributors

Jangwon Park and Donggyu Kim

Acknowledgements

KoBigBird๋Š” Tensorflow Research Cloud (TFRC) ํ”„๋กœ๊ทธ๋žจ์˜ Cloud TPU ์ง€์›์œผ๋กœ ์ œ์ž‘๋˜์—ˆ์Šต๋‹ˆ๋‹ค.

๋˜ํ•œ ๋ฉ‹์ง„ ๋กœ๊ณ ๋ฅผ ์ œ๊ณตํ•ด์ฃผ์‹  Seyun Ahn๋‹˜๊ป˜ ๊ฐ์‚ฌ๋ฅผ ์ „ํ•ฉ๋‹ˆ๋‹ค.

About

๐Ÿฆ… Pretrained BigBird Model for Korean (up to 4096 tokens)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 97.5%
  • Shell 2.3%
  • Makefile 0.2%