forked from ShihuaHuang95/DEIM
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Showing
1 changed file
with
36 additions
and
24 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -9,6 +9,9 @@ | |
<a href="https://arxiv.org/abs/2412.xx"> | ||
<img alt="arXiv" src="https://img.shields.io/badge/arXiv-Coming%20Soon-red"> | ||
</a> | ||
<a href="https://arxiv.org/abs/2412.xx"> | ||
<img alt="project webpage" src="https://img.shields.io/badge/Webpage-Coming%20Soon-red"> | ||
</a> | ||
<a href="https://github.com/ShihuaHuang95/DEIM/pulls"> | ||
<img alt="prs" src="https://img.shields.io/github/issues-pr/ShihuaHuang95/DEIM"> | ||
</a> | ||
|
@@ -24,29 +27,22 @@ | |
</p> | ||
|
||
<p align="center"> | ||
DEIM is a novel training framewokr that enhances the matching mechanism in the DETR framework, achieving faster convergence and higher accuracy for real-time DETRs. | ||
DEIM is a novel training framework that enhances the matching mechanism in the DETR framework, achieving faster convergence and higher accuracy for real-time DETRs. | ||
</p> | ||
|
||
--- | ||
<!-- | ||
<p align="center"> | ||
[Shihua Huang](http://www.shihuahuang.cn/)<sup>1</sup>, | ||
[Zhichao Lu](https://scholar.google.com/citations?user=tIFWBcQAAAAJ&hl=en)<sup>2</sup>, | ||
[Xiaodong Cun](https://vinthony.github.io/academic/)<sup>3</sup>, | ||
[Yongjun Yu](#)<sup>1</sup>, | ||
[Xiao Zhou](#)<sup>4</sup>, | ||
[Xi Shen](https://xwcv.github.io)<sup>1</sup> | ||
</p> --> | ||
|
||
<p align="center"> | ||
Shihua Huang<sup>1</sup>, | ||
Zhichao Lu<sup>2</sup>, | ||
Xiaodong Cun<sup>3</sup>, | ||
Yongjun Yu<sup>1</sup>, | ||
Xiao Zhou<sup>4</sup>, | ||
Xi Shen<sup>1</sup> | ||
</p> | ||
|
||
<div align="center"> | ||
<a href="http://www.shihuahuang.cn">Shihua Huang</a><sup>1</sup>, | ||
<a href="https://scholar.google.com/citations?user=tIFWBcQAAAAJ&hl=en">Zhichao Lu</a><sup>2</sup>, | ||
<a href="https://vinthony.github.io/academic/">Xiaodong Cun</a><sup>3</sup>, | ||
Yongjun Yu<sup>1</sup>, | ||
Xiao Zhou<sup>4</sup>, | ||
<a href="https://xishen0220.github.io">Xi Shen</a><sup>1*</sup> | ||
</div> | ||
|
||
|
||
<p align="center"> | ||
<i> | ||
1. Intellindust AI Lab 2. City University of Hong Kong 3. Great Bay University 4. Hefei Normal University | ||
|
@@ -57,6 +53,7 @@ | |
**📧 Corresponding author:** <a href="mailto:[email protected]">[email protected]</a> | ||
</p> | ||
|
||
|
||
<p align="center"> | ||
<strong>If you like , please give us a ⭐! Your support motivates us to keep improving!</strong> | ||
</p> | ||
|
@@ -67,10 +64,21 @@ | |
|
||
</details> | ||
|
||
|
||
|
||
## 🚀 Updates | ||
- [x] **\[2024.12.03\]** Release DEIM series. Besides, DEIM repo supports the re-implmentations of [D-FINE](https://arxiv.org/abs/2410.13842) and [RT-DETR](https://arxiv.org/abs/2407.17140). | ||
|
||
## Model Zoo | ||
## Table of Content | ||
* [1. Model Zoo](https://github.com/ShihuaHuang95/DEIM?tab=readme-ov-file#1-model-zoo) | ||
* [2. Quick start](https://github.com/ShihuaHuang95/DEIM?tab=readme-ov-file#2-quick-start) | ||
* [3. Usage](https://github.com/ShihuaHuang95/DEIM?tab=readme-ov-file#3-usage) | ||
* [4. Tools](https://github.com/ShihuaHuang95/DEIM?tab=readme-ov-file#4-tools) | ||
* [5. Citation](https://github.com/ShihuaHuang95/DEIM?tab=readme-ov-file#5-citation) | ||
* [6. Acknowledgement](https://github.com/ShihuaHuang95/DEIM?tab=readme-ov-file#6-acknowledgement) | ||
|
||
|
||
## 1. Model Zoo | ||
|
||
### DEIM-D-FINE | ||
| Model | Dataset | AP<sup>val</sup> | #Params | Latency | GFLOPs | config | checkpoint | ||
|
@@ -80,6 +88,10 @@ | |
**L** | COCO | **54.7** | 31M | 8.07ms | 91 | [yml](./configs/deim_dfine/deim_hgnetv2_l_coco.yml) | [ckpt](https://drive.google.com/file/d/1PIRf02XkrA2xAD3wEiKE2FaamZgSGTAr/view?usp=drive_link) | | ||
**X** | COCO | **56.5** | 62M | 12.89ms | 202 | [yml](./configs/deim_dfine/deim_hgnetv2_x_coco.yml) | [ckpt](https://drive.google.com/file/d/1dPtbgtGgq1Oa7k_LgH1GXPelg1IVeu0j/view?usp=drive_link) | | ||
|
||
<details> | ||
<summary> | ||
</summary> | ||
</details> | ||
|
||
### DEIM-RTDETRv2 | ||
| Model | Dataset | AP<sup>val</sup> | #Params | Latency | GFLOPs | config | checkpoint | ||
|
@@ -91,7 +103,7 @@ | |
**X** | COCO | **55.5** | 76M | 13.66ms | 259 | [yml](./configs/deim_rtdetrv2/deim_r101vd_60e_coco.yml) | [ckpt](https://drive.google.com/file/d/153_JKff6EpFgiLKaqkJsoDcLal_0ux_F/view?usp=drive_link) | | ||
|
||
|
||
## Quick start | ||
## 2. Quick start | ||
|
||
### Setup | ||
|
||
|
@@ -224,7 +236,7 @@ To train on your custom dataset, you need to organize it in the COCO format. Fol | |
</details> | ||
|
||
|
||
## Usage | ||
## 3. Usage | ||
<details open> | ||
<summary> COCO2017 </summary> | ||
|
||
|
@@ -316,7 +328,7 @@ If you'd like to train **DEIM** on COCO2017 with an input size of 320x320, follo | |
|
||
</details> | ||
|
||
## Tools | ||
## 4. Tools | ||
<details> | ||
<summary> Deployment </summary> | ||
|
||
|
@@ -407,7 +419,7 @@ python reference/convert_weight.py model.pth | |
</details> | ||
|
||
|
||
## Citation | ||
## 5. Citation | ||
If you use `DEIM` or its methods in your work, please cite the following BibTeX entries: | ||
<details open> | ||
<summary> bibtex </summary> | ||
|
@@ -423,7 +435,7 @@ If you use `DEIM` or its methods in your work, please cite the following BibTeX | |
``` | ||
</details> | ||
|
||
## Acknowledgement | ||
## 6. Acknowledgement | ||
Our work is built upon [D-FINE](https://github.com/Peterande/D-FINE) and [RT-DETR](https://github.com/lyuwenyu/RT-DETR). | ||
|
||
✨ Feel free to contribute and reach out if you have any questions! ✨ |