Skip to content

donghaiyw/UniversalVocoding

 
 

Repository files navigation

Robust Universal Neural Vocoding

A PyTorch implementation of Robust Universal Neural Vocoding. Audio samples can be found here.

network

Quick Start

  1. Ensure you have Python 3 and PyTorch 1.

  2. Clone the repo:

git clone https://github.com/bshall/UniversalVocoding
cd ./UniversalVocoding
  1. Install requirements:
pip install -r requirements.txt
  1. Download and extract ZeroSpeech2019 TTS without the T English dataset:
wget https://download.zerospeech.com/2019/english.tgz
tar -xvzf english.tgz
  1. Extract Mel spectrograms and preprocess audio:
python preprocess.py
  1. Train the model:
python train.py
  1. Generate:
python generate.py --checkpoint=/path/to/checkpoint.pt --wav-path=/path/to/wav.wav

Pretrained Models

Pretrained weights for the 9-bit model are available here.

Notable Differences from the Paper

  1. Trained on 16kHz audio from 102 different speakers (ZeroSpeech 2019: TTS without T English dataset)
  2. The model generates 9-bit mu-law audio (planning on training a 10-bit model soon)
  3. Uses an embedding layer instead of one-hot encoding

Acknowlegements

About

A PyTorch implementation of "Robust Universal Neural Vocoding"

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%