forked from mozilla/gecko-dev
-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Bug 1845095: Bloom filter for fast-rejecting
:has()
. r=emilio
Differential Revision: https://phabricator.services.mozilla.com/D184525
- Loading branch information
Showing
12 changed files
with
241 additions
and
20 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,158 @@ | ||
/* This Source Code Form is subject to the terms of the Mozilla Public | ||
* License, v. 2.0. If a copy of the MPL was not distributed with this | ||
* file, You can obtain one at https://mozilla.org/MPL/2.0/. */ | ||
|
||
/// Bloom filter for relative selectors. | ||
use fxhash::FxHashMap; | ||
|
||
use crate::bloom::BloomFilter; | ||
use crate::context::QuirksMode; | ||
use crate::parser::{ | ||
collect_selector_hashes, RelativeSelector, RelativeSelectorMatchHint, | ||
}; | ||
use crate::tree::{Element, OpaqueElement}; | ||
use crate::SelectorImpl; | ||
|
||
enum Entry { | ||
/// Filter lookup happened once. Construction of the filter is expensive, | ||
/// so this is set when the element for subtree traversal is encountered. | ||
Lookup, | ||
/// Filter lookup happened more than once, and the filter for this element's | ||
/// subtree traversal is constructed. Could use special handlings for pseudo-classes | ||
/// such as `:hover` and `:focus`, see Bug 1845503. | ||
HasFilter(Box<BloomFilter>), | ||
} | ||
|
||
#[derive(Clone, Copy, Hash, Eq, PartialEq)] | ||
enum TraversalKind { | ||
Children, | ||
Descendants, | ||
} | ||
|
||
fn add_to_filter<E: Element>(element: &E, filter: &mut BloomFilter, kind: TraversalKind) -> bool { | ||
let mut child = element.first_element_child(); | ||
while let Some(e) = child { | ||
if !e.add_element_unique_hashes(filter) { | ||
return false; | ||
} | ||
if kind == TraversalKind::Descendants { | ||
if !add_to_filter(&e, filter, kind) { | ||
return false; | ||
} | ||
} | ||
child = e.next_sibling_element(); | ||
} | ||
true | ||
} | ||
|
||
#[derive(Clone, Copy, Hash, Eq, PartialEq)] | ||
struct Key(OpaqueElement, TraversalKind); | ||
|
||
/// Map of bloom filters for fast-rejecting relative selectors. | ||
#[derive(Default)] | ||
pub struct RelativeSelectorFilterMap { | ||
map: FxHashMap<Key, Entry>, | ||
} | ||
|
||
fn fast_reject<Impl: SelectorImpl>( | ||
selector: &RelativeSelector<Impl>, | ||
quirks_mode: QuirksMode, | ||
filter: &BloomFilter, | ||
) -> bool { | ||
let mut hashes = [0u32; 4]; | ||
let mut len = 0; | ||
// For inner selectors, we only collect from the single rightmost compound. | ||
// This is because inner selectors can cause breakouts: e.g. `.anchor:has(:is(.a .b) .c)` | ||
// can match when `.a` is the ancestor of `.anchor`. Including `.a` would possibly fast | ||
// reject the subtree for not having `.a`, even if the selector would match. | ||
// Technically, if the selector's traversal is non-sibling subtree, we can traverse | ||
// inner selectors up to the point where a descendant/child combinator is encountered | ||
// (e.g. In `.anchor:has(:is(.a ~ .b) .c)`, `.a` is guaranteed to be the a descendant | ||
// of `.anchor`). While that can be separately handled, well, this is simpler. | ||
collect_selector_hashes( | ||
selector.selector.iter(), | ||
quirks_mode, | ||
&mut hashes, | ||
&mut len, | ||
|s| s.iter(), | ||
); | ||
for i in 0..len { | ||
if !filter.might_contain_hash(hashes[i]) { | ||
// Definitely rejected. | ||
return true; | ||
} | ||
} | ||
false | ||
} | ||
|
||
impl RelativeSelectorFilterMap { | ||
fn get_filter<E: Element>(&mut self, element: &E, kind: TraversalKind) -> Option<&BloomFilter> { | ||
// Insert flag to indicate that we looked up the filter once, and | ||
// create the filter if and only if that flag is there. | ||
let key = Key(element.opaque(), kind); | ||
let entry = self | ||
.map | ||
.entry(key) | ||
.and_modify(|entry| { | ||
if !matches!(entry, Entry::Lookup) { | ||
return; | ||
} | ||
let mut filter = BloomFilter::new(); | ||
// Go through all children/descendants of this element and add their hashes. | ||
if add_to_filter(element, &mut filter, kind) { | ||
*entry = Entry::HasFilter(Box::new(filter)); | ||
} | ||
}) | ||
.or_insert(Entry::Lookup); | ||
match entry { | ||
Entry::Lookup => None, | ||
Entry::HasFilter(ref filter) => Some(filter.as_ref()), | ||
} | ||
} | ||
|
||
/// Potentially reject the given selector for this element. | ||
/// This may seem redundant in presence of the cache, but the cache keys into the | ||
/// selector-element pair specifically, while this filter keys to the element | ||
/// and the traversal kind, so it is useful for handling multiple selectors | ||
/// that effectively end up looking at the same(-ish, for siblings) subtree. | ||
pub fn fast_reject<Impl: SelectorImpl, E: Element>( | ||
&mut self, | ||
element: &E, | ||
selector: &RelativeSelector<Impl>, | ||
quirks_mode: QuirksMode, | ||
) -> bool { | ||
if matches!(selector.match_hint, RelativeSelectorMatchHint::InNextSibling) { | ||
// Don't bother. | ||
return false; | ||
} | ||
let is_sibling = matches!( | ||
selector.match_hint, | ||
RelativeSelectorMatchHint::InSibling | | ||
RelativeSelectorMatchHint::InNextSiblingSubtree | | ||
RelativeSelectorMatchHint::InSiblingSubtree | ||
); | ||
let is_subtree = matches!( | ||
selector.match_hint, | ||
RelativeSelectorMatchHint::InSubtree | | ||
RelativeSelectorMatchHint::InNextSiblingSubtree | | ||
RelativeSelectorMatchHint::InSiblingSubtree | ||
); | ||
let kind = if is_subtree { | ||
TraversalKind::Descendants | ||
} else { | ||
TraversalKind::Children | ||
}; | ||
if is_sibling { | ||
// Contain the entirety of the parent's children/subtree in the filter, and use that. | ||
// This is less likely to reject, especially for sibling subtree matches; however, it's less | ||
// expensive memory-wise, compared to storing filters for each sibling. | ||
element.parent_element().map_or(false, |parent| { | ||
self.get_filter(&parent, kind) | ||
.map_or(false, |filter| fast_reject(selector, quirks_mode, filter)) | ||
}) | ||
} else { | ||
self.get_filter(element, kind) | ||
.map_or(false, |filter| fast_reject(selector, quirks_mode, filter)) | ||
} | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -3,3 +3,4 @@ | |
* file, You can obtain one at https://mozilla.org/MPL/2.0/. */ | ||
|
||
pub mod cache; | ||
pub mod filter; |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.