Skip to content

Commit

Permalink
更新example 和模型转换代码
Browse files Browse the repository at this point in the history
  • Loading branch information
Zheng-Bicheng committed Feb 15, 2023
1 parent 4ccfbea commit f900199
Show file tree
Hide file tree
Showing 6 changed files with 239 additions and 1 deletion.
55 changes: 55 additions & 0 deletions examples/vision/keypointdetection/tiny_pose/rknpu2/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,55 @@
[English](README.md) | 简体中文
# PP-TinyPose RKNPU2部署示例

## 模型版本说明

- [PaddleDetection release/2.5](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.5)

目前FastDeploy支持如下模型的部署

- [PP-TinyPose系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.5/configs/keypoint/tiny_pose/README.md)

## 准备PP-TinyPose部署模型

PP-TinyPose模型导出,请参考其文档说明[模型导出](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.5/deploy/EXPORT_MODEL.md)

**注意**:PP-TinyPose导出的模型包含`model.pdmodel``model.pdiparams``infer_cfg.yml`三个文件,FastDeploy会从yaml文件中获取模型在推理时需要的预处理信息。

## 模型转换example

### Paddle模型转换为ONNX模型

由于Rockchip提供的rknn-toolkit2工具暂时不支持Paddle模型直接导出为RKNN模型,因此需要先将Paddle模型导出为ONNX模型,再将ONNX模型转为RKNN模型。

```bash
# 下载Paddle静态图模型并解压
wget https://bj.bcebos.com/paddlehub/fastdeploy/PP_TinyPose_256x192_infer.tgz
tar -xvf PP_TinyPose_256x192_infer.tgz

# 静态图转ONNX模型,注意,这里的save_file请和压缩包名对齐
paddle2onnx --model_dir PP_TinyPose_256x192_infer \
--model_filename model.pdmodel \
--params_filename model.pdiparams \
--save_file PP_TinyPose_256x192_infer/PP_TinyPose_256x192_infer.onnx \
--enable_dev_version True

# 固定shape
python -m paddle2onnx.optimize --input_model PP_TinyPose_256x192_infer/PP_TinyPose_256x192_infer.onnx \
--output_model PP_TinyPose_256x192_infer/PP_TinyPose_256x192_infer.onnx \
--input_shape_dict "{'image':[1,3,256,192]}"
```

### ONNX模型转RKNN模型

为了方便大家使用,我们提供了python脚本,通过我们预配置的config文件,你将能够快速地转换ONNX模型到RKNN模型

```bash
python tools/rknpu2/export.py --config_path tools/rknpu2/config/PP_TinyPose_256x192_unquantized.yaml \
--target_platform rk3588
```

## 详细部署文档

- [模型详细介绍](../README_CN.md)
- [Python部署](python)
- [C++部署](cpp)
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
PROJECT(infer_demo C CXX)
CMAKE_MINIMUM_REQUIRED (VERSION 3.12)

# 指定下载解压后的fastdeploy库路径
option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.")

include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake)

# 添加FastDeploy依赖头文件
include_directories(${FASTDEPLOY_INCS})

add_executable(infer_tinypose_demo ${PROJECT_SOURCE_DIR}/pptinypose_infer.cc)
target_link_libraries(infer_tinypose_demo ${FASTDEPLOY_LIBS})
85 changes: 85 additions & 0 deletions examples/vision/keypointdetection/tiny_pose/rknpu2/cpp/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,85 @@
[English](README.md) | 简体中文
# PP-TinyPose C++部署示例

本目录下提供`pptinypose_infer.cc`快速完成PP-TinyPose通过NPU加速部署的`单图单人关键点检测`示例
>> **注意**: PP-Tinypose单模型目前只支持单图单人关键点检测,因此输入的图片应只包含一个人或者进行过裁剪的图像。多人关键点检测请参考[PP-TinyPose Pipeline](../../../det_keypoint_unite/cpp/README.md)
在部署前,需确认以下两个步骤

- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. 根据开发环境,下载预编译部署库和samples代码,参考[FastDeploy预编译库](../../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)


以Linux上推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本1.0.3以上(x.x.x>=1.0.3)

```bash
mkdir build
cd build
# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j

# 下载PP-TinyPose模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/PP_TinyPose_256x192_infer.tgz
tar -xvf PP_TinyPose_256x192_infer.tgz
wget https://bj.bcebos.com/paddlehub/fastdeploy/hrnet_demo.jpg


# CPU推理
./infer_tinypose_demo PP_TinyPose_256x192_infer hrnet_demo.jpg
```

运行完成可视化结果如下图所示
<div align="center">
<img src="https://user-images.githubusercontent.com/16222477/196386764-dd51ad56-c410-4c54-9580-643f282f5a83.jpeg", width=359px, height=423px />
</div>

以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md)

## PP-TinyPose C++接口

### PP-TinyPose类

```c++
fastdeploy::vision::keypointdetection::PPTinyPose(
const string& model_file,
const string& params_file = "",
const string& config_file,
const RuntimeOption& runtime_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::PADDLE)
```
PPTinyPose模型加载和初始化,其中model_file为导出的Paddle模型格式。
**参数**
> * **model_file**(str): 模型文件路径
> * **params_file**(str): 参数文件路径
> * **config_file**(str): 推理部署配置文件
> * **runtime_option**(RuntimeOption): 后端推理配置,默认为None,即采用默认配置
> * **model_format**(ModelFormat): 模型格式,默认为Paddle格式
#### Predict函数
> ```c++
> PPTinyPose::Predict(cv::Mat* im, KeyPointDetectionResult* result)
> ```
>
> 模型预测接口,输入图像直接输出关键点检测结果。
>
> **参数**
>
> > * **im**: 输入图像,注意需为HWC,BGR格式
> > * **result**: 关键点检测结果,包括关键点的坐标以及关键点对应的概率值, KeyPointDetectionResult说明参考[视觉模型预测结果](../../../../../docs/api/vision_results/)
### 类成员属性
#### 后处理参数
> > * **use_dark**(bool): 是否使用DARK进行后处理[参考论文](https://arxiv.org/abs/1910.06278)
- [模型介绍](../../)
- [Python部署](../python)
- [视觉模型预测结果](../../../../../docs/api/vision_results/)
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)
Original file line number Diff line number Diff line change
@@ -0,0 +1,70 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "fastdeploy/vision.h"

void RKNPU2Infer(const std::string& tinypose_model_dir,
const std::string& image_file) {
auto tinypose_model_file =
tinypose_model_dir + "/picodet_s_416_coco_lcnet_rk3588.rknn";
auto tinypose_params_file = "";
auto tinypose_config_file = tinypose_model_dir + "infer_cfg.yml";
auto option = fastdeploy::RuntimeOption();
option.UseRKNPU2();
auto tinypose_model = fastdeploy::vision::keypointdetection::PPTinyPose(
tinypose_model_file, tinypose_params_file, tinypose_config_file, option);

if (!tinypose_model.Initialized()) {
std::cerr << "TinyPose Model Failed to initialize." << std::endl;
return;
}

tinypose_model.DisablePermute();
tinypose_model.DisableNormalize();

auto im = cv::imread(image_file);
fastdeploy::vision::KeyPointDetectionResult res;
if (!tinypose_model.Predict(&im, &res)) {
std::cerr << "TinyPose Prediction Failed." << std::endl;
return;
} else {
std::cout << "TinyPose Prediction Done!" << std::endl;
}

std::cout << res.Str() << std::endl;

auto tinypose_vis_im = fastdeploy::vision::VisKeypointDetection(im, res, 0.5);
cv::imwrite("tinypose_vis_result.jpg", tinypose_vis_im);
std::cout << "TinyPose visualized result saved in ./tinypose_vis_result.jpg"
<< std::endl;
}

int main(int argc, char* argv[]) {
if (argc < 4) {
std::cout << "Usage: infer_demo path/to/pptinypose_model_dir path/to/image "
"run_option, "
"e.g ./infer_model ./pptinypose_model_dir ./test.jpeg 0"
<< std::endl;
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
"with gpu; 2: run with gpu and use tensorrt backend; 3: run "
"with kunlunxin."
<< std::endl;
return -1;
}

if (std::atoi(argv[3]) == 0) {
RKNPU2Infer(argv[1], argv[2]);
}
return 0;
}
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ cd path/to/paddleseg/sophgo/python
wget https://paddleseg.bj.bcebos.com/dygraph/demo/cityscapes_demo.png

# PaddleSeg模型转换为bmodel模型
将Paddle模型转换为SOPHGO bmodel模型,转换步骤参考[文档](../README_CN.md#将paddleseg推理模型转换为bmodel模型步骤)
将Paddle模型转换为SOPHGO bmodel模型,转换步骤参考[文档](../README.md#将paddleseg推理模型转换为bmodel模型步骤)

# 推理
python3 infer.py --model_file ./bmodel/pp_liteseg_1684x_f32.bmodel --config_file ./bmodel/deploy.yaml --image cityscapes_demo.png
Expand Down
15 changes: 15 additions & 0 deletions tools/rknpu2/config/PP_TinyPose_256x192_unquantized.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,15 @@
mean:
-
- 123.675
- 116.28
- 103.53
std:
-
- 58.395
- 57.12
- 57.375
model_path: ./PP_TinyPose_256x192_infer/PP_TinyPose_256x192_infer.onnx
outputs_nodes: ['conv2d_441.tmp_1']
do_quantization: False
dataset:
output_folder: "./PP_TinyPose_256x192_infer"

0 comments on commit f900199

Please sign in to comment.