Skip to content

Commit

Permalink
sigmoid cross-entropy loss: add GPU forward for full GPU mode
Browse files Browse the repository at this point in the history
close BVLC#3004
  • Loading branch information
shelhamer committed Oct 27, 2016
1 parent 4ba654f commit 197d11a
Show file tree
Hide file tree
Showing 3 changed files with 37 additions and 3 deletions.
2 changes: 2 additions & 0 deletions include/caffe/layers/sigmoid_cross_entropy_loss_layer.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -59,6 +59,8 @@ class SigmoidCrossEntropyLossLayer : public LossLayer<Dtype> {
/// @copydoc SigmoidCrossEntropyLossLayer
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);

/**
* @brief Computes the sigmoid cross-entropy loss error gradient w.r.t. the
Expand Down
2 changes: 1 addition & 1 deletion src/caffe/layers/sigmoid_cross_entropy_loss_layer.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -68,7 +68,7 @@ void SigmoidCrossEntropyLossLayer<Dtype>::Backward_cpu(
}

#ifdef CPU_ONLY
STUB_GPU_BACKWARD(SigmoidCrossEntropyLossLayer, Backward);
STUB_GPU(SigmoidCrossEntropyLossLayer);
#endif

INSTANTIATE_CLASS(SigmoidCrossEntropyLossLayer);
Expand Down
36 changes: 34 additions & 2 deletions src/caffe/layers/sigmoid_cross_entropy_loss_layer.cu
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,39 @@

namespace caffe {

template <typename Dtype>
__global__ void SigmoidCrossEntropyLossForwardGPU(const int nthreads,
const Dtype* input_data, const Dtype* target, Dtype* loss) {
CUDA_KERNEL_LOOP(i, nthreads) {
loss[i] = input_data[i] * (target[i] - (input_data[i] >= 0)) -
log(1 + exp(input_data[i] - 2 * input_data[i] * (input_data[i] >= 0)));
}
}

template <typename Dtype>
void SigmoidCrossEntropyLossLayer<Dtype>::Forward_gpu(
const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) {
// The forward pass computes the sigmoid outputs.
sigmoid_bottom_vec_[0] = bottom[0];
sigmoid_layer_->Forward(sigmoid_bottom_vec_, sigmoid_top_vec_);
// Compute the loss (negative log likelihood)
const int count = bottom[0]->count();
const int num = bottom[0]->num();
// Stable version of loss computation from input data
const Dtype* input_data = bottom[0]->gpu_data();
const Dtype* target = bottom[1]->gpu_data();
// Since this memory is not used for anything until it is overwritten
// on the backward pass, we use it here to avoid having to allocate new GPU
// memory to accumulate intermediate results in the kernel.
Dtype* loss_data = bottom[0]->mutable_gpu_diff();
// NOLINT_NEXT_LINE(whitespace/operators)
SigmoidCrossEntropyLossForwardGPU<Dtype><<<CAFFE_GET_BLOCKS(count),
CAFFE_CUDA_NUM_THREADS>>>(count, input_data, target, loss_data);
Dtype loss;
caffe_gpu_asum(count, loss_data, &loss);
top[0]->mutable_cpu_data()[0] = loss / num;
}

template <typename Dtype>
void SigmoidCrossEntropyLossLayer<Dtype>::Backward_gpu(
const vector<Blob<Dtype>*>& top, const vector<bool>& propagate_down,
Expand All @@ -28,7 +61,6 @@ void SigmoidCrossEntropyLossLayer<Dtype>::Backward_gpu(
}
}

INSTANTIATE_LAYER_GPU_BACKWARD(SigmoidCrossEntropyLossLayer);

INSTANTIATE_LAYER_GPU_FUNCS(SigmoidCrossEntropyLossLayer);

} // namespace caffe

0 comments on commit 197d11a

Please sign in to comment.