Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
sparse-index: improve lstat caching of sparse paths
The clear_skip_worktree_from_present_files() method was first introduced in af6a518 (repo_read_index: clear SKIP_WORKTREE bit from files present in worktree, 2022-01-14) to allow better interaction with the working directory in the presence of paths outside of the sparse-checkout. The initial implementation would lstat() every single SKIP_WORKTREE path to see if it existed; if it ran across a sparse directory that existed (when a sparse index was in use), then it would expand the index and then check every SKIP_WORKTREE path. Since these lstat() calls were very expensive, this was improved in d79d299 (Accelerate clear_skip_worktree_from_present_files() by caching, 2022-01-14) by caching directories that do not exist so it could avoid lstat()ing any files under such directories. However, there are some inefficiencies in that caching mechanism. The caching mechanism stored only the parent directory as not existing, even if a higher parent directory also does not exist. This means that wasted lstat() calls would occur when the paths passed to path_found() change immediate parent directories but within the same parent directory that does not exist. To create an example repository that demonstrates this problem, it helps to have a directory outside of the sparse-checkout that contains many deep paths. In particular, the first paths (in lexicographic order) underneath the sparse directory should have deep directory structures, maximizing the difference between the old caching algorithm that looks to a single parent and the new caching algorithm that looks to the top-most missing directory. The performance test script p2000-sparse-operations.sh takes the sample repository and copies its HEAD to several copies nested in directories of the form f<i>/f<j>/f<k> where i, j, and k are numbers from 1 to 4. The sparse-checkout cone is then selected as "f2/f4/". Creating "f1/f1/" will trigger the behavior and also lead to some interesting cases for the caching algorithm since "f1/f1/" exists but "f1/f2/" and "f3/" do not. This is difficult to notice when running performance tests using the Git repository (or a blow-up of the Git repository, as in p2000-sparse-operations.sh) because Git has a very shallow directory structure. This change reorganizes the caching algorithm to focus on storing the highest level leading directory that does not exist; specifically this means that that directory's parent _does_ exist. By doing a little extra work on a path passed to path_found(), we can short-circuit all of the paths passed to path_found() afterwards that match a prefix with that non-existing directory. When in a repository where the first sparse file is likely to have a much deeper path than the first non-existing directory, this can realize significant gains. The details of this algorithm require careful attention, so the new implementation of path_found() has detailed comments, including the use of a new max_common_dir_prefix() method that may be of independent interest. It's worth noting that this is not universally positive, since we are doing extra lstat() calls to establish the exact path to cache. In the blow-up of the Git repository, we can see that the lstat count _increases_ from 28 to 31. However, these numbers were already artificially low. Contributor Elijah Newren created a publicly-available test repository that demonstrates the difference in these caching algorithms in the most extreme way. To test, follow these steps: git clone --sparse https://github.com/newren/gvfs-like-git-bomb cd gvfs-like-git-bomb ./runme.sh # NOTE: check scripts before running! At this point, assuming you do not have index.sparse=true set globally, the index has one million paths with the SKIP_WORKTREE bit and they will all be sent to path_found() in the sparse loop. You can measure this by running 'git status' with GIT_TRACE2_PERF=1: Sparse files in the index: 1,000,000 sparse_lstat_count (before): 200,000 sparse_lstat_count (after): 2 And here are the performance numbers: Benchmark 1: old Time (mean ± σ): 397.5 ms ± 4.1 ms Range (min … max): 391.2 ms … 404.8 ms 10 runs Benchmark 2: new Time (mean ± σ): 252.7 ms ± 3.1 ms Range (min … max): 249.4 ms … 259.5 ms 11 runs Summary 'new' ran 1.57 ± 0.02 times faster than 'old' By modifying this example further, we can demonstrate a more realistic example and include the sparse index expansion. Continue by creating this directory, confusing both caching algorithms somewhat: mkdir -p bomb/d/e/f/a/a Then re-run the 'git status' tests to see these statistics: Sparse files in the index: 1,000,000 sparse_lstat_count (before): 724,010 sparse_lstat_count (after): 106 Benchmark 1: old Time (mean ± σ): 753.0 ms ± 3.5 ms Range (min … max): 749.7 ms … 760.9 ms 10 runs Benchmark 2: new Time (mean ± σ): 201.4 ms ± 3.2 ms Range (min … max): 196.0 ms … 207.9 ms 14 runs Summary 'new' ran 3.74 ± 0.06 times faster than 'old' Note that if this repository had a sparse index enabled, the additional cost of expanding the sparse index affects the total time of these commands by over four seconds, significantly diminishing the benefit of the caching algorithm. Having existing paths outside of the sparse-checkout is a known performance issue for the sparse index and is a known trade-off for the performance benefits given when no such paths exist. Using an internal monorepo with over two million paths at HEAD and a typical sparse-checkout cone such that the sparse index contains ~190,000 entries (including over two thousand sparse trees), I was able to measure these lstat counts when one sparse directory actually exists on disk: Sparse files in expanded index: 1,841,997 full_lstat_count (before): 1,188,161 full_lstat_count (after): 4,404 This resulted in this absolute time change, on a warm disk: Time in full loop (before): 13.481 s Time in full loop (after): 0.081 s (These times were calculated on a Windows machine, where lstat() is slower than a similar Linux machine.) Helped-by: Elijah Newren <[email protected]> Signed-off-by: Derrick Stolee <[email protected]> Reviewed-by: Elijah Newren <[email protected]> Signed-off-by: Junio C Hamano <[email protected]>
- Loading branch information