Skip to content

Commit

Permalink
Updated code with major refactoring and included additional problems …
Browse files Browse the repository at this point in the history
…in ICLR 2019 paper
  • Loading branch information
wouterkool committed Feb 6, 2019
1 parent c9d6fbd commit f563e33
Show file tree
Hide file tree
Showing 111 changed files with 8,314 additions and 440 deletions.
7 changes: 7 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -1,4 +1,11 @@
data/
outputs/
logs/
results/
__pycache__/
.idea
*/.ipynb_checkpoints
*.tc.*
*.tc_backward.*
*.log
*.bak
87 changes: 73 additions & 14 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,54 +1,113 @@
# Attention Solves Your TSP, Approximately
# Attention, Learn to Solve Routing Problems!

Attention based model for learning to solve the Travelling Salesman Problem (TSP) and the Vehicle Routing Problem (VRP). Training with REINFORCE with greedy rollout baseline.
Attention based model for learning to solve the Travelling Salesman Problem (TSP) and the Vehicle Routing Problem (VRP), Orienteering Problem (OP) and (Stochastic) Prize Collecting TSP (PCTSP). Training with REINFORCE with greedy rollout baseline.

## Paper
Please see our paper [Attention Solves Your TSP, Approximately](https://arxiv.org/abs/1803.08475).
For more details, please see our paper [Attention, Learn to Solve Routing Problems!](https://openreview.net/forum?id=ByxBFsRqYm) which has been accepted at [ICLR 2019](https://iclr.cc/Conferences/2019). If this code is useful for your work, please cite our paper:

```
@inproceedings{
kool2018attention,
title={Attention, Learn to Solve Routing Problems!},
author={Wouter Kool and Herke van Hoof and Max Welling},
booktitle={International Conference on Learning Representations},
year={2019},
url={https://openreview.net/forum?id=ByxBFsRqYm},
}
```

## Dependencies

* Python>=3.5
* NumPy
* SciPy
* [PyTorch](http://pytorch.org/)=0.3
* [PyTorch](http://pytorch.org/)=0.4
* tqdm
* [tensorboard_logger](https://github.com/TeamHG-Memex/tensorboard_logger)
* Matplotlib (optional, only for plotting)

## Usage
## Quick start

For training TSP instances with 20 nodes and using rollout as REINFORCE baseline:
```bash
python run.py --graph_size 20 --baseline rollout --run_name 'tsp20_rollout'
```

By default, training will happen on all available GPUs. To disable CUDA at all, add the flag `--no_cuda`.
## Usage

### Generating data

Training data is generated on the fly. To generate validation and test data (same as used in the paper) for all problems:
```bash
python generate_data.py --problem all --name validation --seed 4321
python generate_data.py --problem all --name test --seed 1234
```

### Training

For training TSP instances with 20 nodes and using rollout as REINFORCE baseline and using the generated validation set:
```bash
python run.py --graph_size 20 --baseline rollout --run_name 'tsp20_rollout' --val_dataset data/tsp/tsp20_validation_seed4321.pkl
```

#### Multiple GPUs
By default, training will happen *on all available GPUs*. To disable CUDA at all, add the flag `--no_cuda`.
Set the environment variable `CUDA_VISIBLE_DEVICES` to only use specific GPUs:
```bash
CUDA_VISIBLE_DEVICES=2,3 python run.py
```
Note that using multiple GPUs has limited efficiency for small problem sizes (up to 50 nodes).

To evaluate a model, use the `--load_path` option to specify the model to load and add the `--eval_only` option, for example:
#### Warm start
You can initialize a run using a pretrained model by using the `--load_path` option:
```bash
python run.py --graph_size 100 --load_path pretrained/tsp_100/epoch-99.pt
```

The `--load_path` option can also be used to load an earlier run, in which case also the optimizer state will be loaded:
```bash
python run.py --graph_size 20 --load_path 'outputs/tsp_20/tsp20_rollout_{datetime}/epoch-0.pt'
```

The `--resume` option can be used instead of the `--load_path` option, which will try to resume the run, e.g. load additionally the baseline state, set the current epoch/step counter and set the random number generator state.

### Evaluation
To evaluate a model, you can add the `--eval-only` flag to `run.py`, or use `eval.py`, which will additionally measure timing and save the results:
```bash
python eval.py data/tsp/tsp20_test_seed1234.pkl --model pretrained/tsp_20 --decode_strategy greedy
```
If the epoch is not specified, by default the last one in the folder will be used.

#### Sampling
To report the best of 1280 sampled solutions, use
```bash
python run.py --graph_size 20 --eval_only --load_path 'outputs/tsp_20/tsp20_rollout_{datetime}/epoch-0.pt'
python eval.py data/tsp/tsp20_test_seed1234.pkl --model pretrained/tsp_20 --decode_strategy sample --width 1280 --eval_batch_size 1
```
Beam Search (not in the paper) is also recently added and can be used using `--decode_strategy bs --width {beam_size}`.

To load a pretrained model:
#### To run baselines
Baselines for different problems are within the corresponding folders and can be ran (on multiple datasets at once) as follows
```bash
CUDA_VISIBLE_DEVICES=0 python run.py --graph_size 100 --eval_only --load_path pretrained/tsp_100/epoch-99.pt
python -m problems.tsp.tsp_baseline farthest_insertion data/tsp/tsp20_test_seed1234.pkl data/tsp/tsp50_test_seed1234.pkl data/tsp/tsp100_test_seed1234.pkl
```
Note that the results may differ slightly from the results reported in the paper, as a different test set was used than the validation set (which depends on the random seed).
To run baselines, you need to install [Compass](https://github.com/bcamath-ds/compass) by running the `install_compass.sh` script from within the `problems/op` directory and [Concorde](http://www.math.uwaterloo.ca/tsp/concorde.html) using the `install_concorde.sh` script from within `problems/tsp`. [LKH3](http://akira.ruc.dk/~keld/research/LKH-3/) should be automatically downloaded and installed when required. To use [Gurobi](http://www.gurobi.com), obtain a ([free academic](http://www.gurobi.com/registration/academic-license-reg)) license and follow the [installation instructions](https://www.gurobi.com/documentation/8.1/quickstart_windows/installing_the_anaconda_py.html).

For other options and help:
### Other options and help
```bash
python run.py -h
python eval.py -h
```

## Example CVRP solution
### Example CVRP solution
See `plot_vrp.ipynb` for an example of loading a pretrained model and plotting the result for Capacitated VRP with 100 nodes.

![CVRP100](images/cvrp_0.png)

## Acknowledgements
Thanks to [pemami4911/neural-combinatorial-rl-pytorch](https://github.com/pemami4911/neural-combinatorial-rl-pytorch) for getting me started with the code for the Pointer Network.
Thanks to [pemami4911/neural-combinatorial-rl-pytorch](https://github.com/pemami4911/neural-combinatorial-rl-pytorch) for getting me started with the code for the Pointer Network.

This repository includes adaptions of the following repositories as baselines:
* https://github.com/MichelDeudon/encode-attend-navigate
* https://github.com/mc-ride/orienteering
* https://github.com/jordanamecler/PCTSP
* https://github.com/rafael2reis/salesman
13 changes: 13 additions & 0 deletions environment.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
# run: conda env create --file environment.yml
name: attention_tsp
channels:
- pytorch
dependencies:
- python>=3.6
- anaconda
- tqdm
- pytorch
- torchvision
- cuda91
- pip:
- tensorboard_logger
216 changes: 216 additions & 0 deletions eval.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,216 @@
import math
import torch
import os
import argparse
import numpy as np
import itertools
from tqdm import tqdm
from utils import load_model, move_to
from utils.data_utils import save_dataset
from torch.utils.data import DataLoader
import time
from datetime import timedelta
from utils.functions import parse_softmax_temperature
mp = torch.multiprocessing.get_context('spawn')


def get_best(sequences, cost, ids=None, batch_size=None):
"""
Ids contains [0, 0, 0, 1, 1, 2, ..., n, n, n] if 3 solutions found for 0th instance, 2 for 1st, etc
:param sequences:
:param lengths:
:param ids:
:return: list with n sequences and list with n lengths of solutions
"""
if ids is None:
idx = cost.argmin()
return sequences[idx:idx+1, ...], cost[idx:idx+1, ...]

splits = np.hstack([0, np.where(ids[:-1] != ids[1:])[0] + 1])
mincosts = np.minimum.reduceat(cost, splits)

group_lengths = np.diff(np.hstack([splits, len(ids)]))
all_argmin = np.flatnonzero(np.repeat(mincosts, group_lengths) == cost)
result = np.full(len(group_lengths) if batch_size is None else batch_size, -1, dtype=int)

result[ids[all_argmin[::-1]]] = all_argmin[::-1]

return [sequences[i] if i >= 0 else None for i in result], [cost[i] if i >= 0 else math.inf for i in result]


def eval_dataset_mp(args):
(dataset_path, width, softmax_temp, opts, i, num_processes) = args

model, _ = load_model(opts.model)
val_size = opts.val_size // num_processes
dataset = model.problem.make_dataset(filename=dataset_path, num_samples=val_size, offset=opts.offset + val_size * i)
device = torch.device("cuda:{}".format(i))

return _eval_dataset(model, dataset, width, softmax_temp, opts, device)


def eval_dataset(dataset_path, width, softmax_temp, opts):
# Even with multiprocessing, we load the model here since it contains the name where to write results
model, _ = load_model(opts.model)
use_cuda = torch.cuda.is_available() and not opts.no_cuda
if opts.multiprocessing:
assert use_cuda, "Can only do multiprocessing with cuda"
num_processes = torch.cuda.device_count()
assert opts.val_size % num_processes == 0

with mp.Pool(num_processes) as pool:
results = list(itertools.chain.from_iterable(pool.map(
eval_dataset_mp,
[(dataset_path, width, softmax_temp, opts, i, num_processes) for i in range(num_processes)]
)))

else:
device = torch.device("cuda:0" if use_cuda else "cpu")
dataset = model.problem.make_dataset(filename=dataset_path, num_samples=opts.val_size, offset=opts.offset)
results = _eval_dataset(model, dataset, width, softmax_temp, opts, device)

# This is parallelism, even if we use multiprocessing (we report as if we did not use multiprocessing, e.g. 1 GPU)
parallelism = opts.eval_batch_size

costs, tours, durations = zip(*results) # Not really costs since they should be negative

print("Average cost: {} +- {}".format(np.mean(costs), 2 * np.std(costs) / np.sqrt(len(costs))))
print("Average serial duration: {} +- {}".format(
np.mean(durations), 2 * np.std(durations) / np.sqrt(len(durations))))
print("Average parallel duration: {}".format(np.mean(durations) / parallelism))
print("Calculated total duration: {}".format(timedelta(seconds=int(np.sum(durations) / parallelism))))

dataset_basename, ext = os.path.splitext(os.path.split(dataset_path)[-1])
model_name = "_".join(os.path.normpath(os.path.splitext(opts.model)[0]).split(os.sep)[-2:])
if opts.o is None:
results_dir = os.path.join(opts.results_dir, model.problem.NAME, dataset_basename)
os.makedirs(results_dir, exist_ok=True)

out_file = os.path.join(results_dir, "{}-{}-{}{}-t{}-{}-{}{}".format(
dataset_basename, model_name,
opts.decode_strategy,
width if opts.decode_strategy != 'greedy' else '',
softmax_temp, opts.offset, opts.offset + len(costs), ext
))
else:
out_file = opts.o

assert opts.f or not os.path.isfile(
out_file), "File already exists! Try running with -f option to overwrite."

save_dataset((results, parallelism), out_file)

return costs, tours, durations


def _eval_dataset(model, dataset, width, softmax_temp, opts, device):

model.to(device)
model.eval()

model.set_decode_type(
"greedy" if opts.decode_strategy in ('bs', 'greedy') else "sampling",
temp=softmax_temp)

dataloader = DataLoader(dataset, batch_size=opts.eval_batch_size)

results = []
for batch in tqdm(dataloader, disable=opts.no_progress_bar):
batch = move_to(batch, device)

start = time.time()
with torch.no_grad():
if opts.decode_strategy in ('sample', 'greedy'):
if opts.decode_strategy == 'greedy':
assert width == 0, "Do not set width when using greedy"
assert opts.eval_batch_size <= opts.max_calc_batch_size, \
"eval_batch_size should be smaller than calc batch size"
batch_rep = 1
iter_rep = 1
elif width * opts.eval_batch_size > opts.max_calc_batch_size:
assert opts.eval_batch_size == 1
assert width % opts.max_calc_batch_size == 0
batch_rep = opts.max_calc_batch_size
iter_rep = width // opts.max_calc_batch_size
else:
batch_rep = width
iter_rep = 1
assert batch_rep > 0
# This returns (batch_size, iter_rep shape)
sequences, costs = model.sample_many(batch, batch_rep=batch_rep, iter_rep=iter_rep)
batch_size = len(costs)
ids = torch.arange(batch_size, dtype=torch.int64, device=costs.device)
else:
assert opts.decode_strategy == 'bs'

cum_log_p, sequences, costs, ids, batch_size = model.beam_search(
batch, beam_size=width,
compress_mask=opts.compress_mask,
max_calc_batch_size=opts.max_calc_batch_size
)

if sequences is None:
sequences = [None] * batch_size
costs = [math.inf] * batch_size
else:
sequences, costs = get_best(
sequences.cpu().numpy(), costs.cpu().numpy(),
ids.cpu().numpy() if ids is not None else None,
batch_size
)
duration = time.time() - start
for seq, cost in zip(sequences, costs):
if model.problem.NAME == "tsp":
seq = seq.tolist() # No need to trim as all are same length
elif model.problem.NAME in ("cvrp", "sdvrp"):
seq = np.trim_zeros(seq).tolist() + [0] # Add depot
elif model.problem.NAME in ("op", "pctsp"):
seq = np.trim_zeros(seq) # We have the convention to exclude the depot
else:
assert False, "Unkown problem: {}".format(model.problem.NAME)
# Note VRP only
results.append((cost, seq, duration))

return results


if __name__ == "__main__":

parser = argparse.ArgumentParser()
parser.add_argument("datasets", nargs='+', help="Filename of the dataset(s) to evaluate")
parser.add_argument("-f", action='store_true', help="Set true to overwrite")
parser.add_argument("-o", default=None, help="Name of the results file to write")
parser.add_argument('--val_size', type=int, default=10000,
help='Number of instances used for reporting validation performance')
parser.add_argument('--offset', type=int, default=0,
help='Offset where to start in dataset (default 0)')
parser.add_argument('--eval_batch_size', type=int, default=1024,
help="Batch size to use during (baseline) evaluation")
# parser.add_argument('--decode_type', type=str, default='greedy',
# help='Decode type, greedy or sampling')
parser.add_argument('--width', type=int, nargs='+',
help='Sizes of beam to use for beam search (or number of samples for sampling), '
'0 to disable (default), -1 for infinite')
parser.add_argument('--decode_strategy', type=str,
help='Beam search (bs), Sampling (sample) or Greedy (greedy)')
parser.add_argument('--softmax_temperature', type=parse_softmax_temperature, default=1,
help="Softmax temperature (sampling or bs)")
parser.add_argument('--model', type=str)
parser.add_argument('--no_cuda', action='store_true', help='Disable CUDA')
parser.add_argument('--no_progress_bar', action='store_true', help='Disable progress bar')
parser.add_argument('--compress_mask', action='store_true', help='Compress mask into long')
parser.add_argument('--max_calc_batch_size', type=int, default=10000, help='Size for subbatches')
parser.add_argument('--results_dir', default='results', help="Name of results directory")
parser.add_argument('--multiprocessing', action='store_true',
help='Use multiprocessing to parallelize over multiple GPUs')

opts = parser.parse_args()

assert opts.o is None or (len(opts.datasets) == 1 and len(opts.width) <= 1), \
"Cannot specify result filename with more than one dataset or more than one width"

widths = opts.width if opts.width is not None else [0]

for width in widths:
for dataset_path in opts.datasets:
eval_dataset(dataset_path, width, opts.softmax_temperature, opts)
Loading

0 comments on commit f563e33

Please sign in to comment.