Skip to content

Commit

Permalink
Add files via upload
Browse files Browse the repository at this point in the history
  • Loading branch information
yukang2017 authored Feb 23, 2023
1 parent 0c13a75 commit 7f44dfe
Showing 1 changed file with 278 additions and 0 deletions.
278 changes: 278 additions & 0 deletions OpenPCDet/pcdet/models/backbones_3d/spconv_backbone_focal_cuda.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,278 @@
from functools import partial

import torch
import spconv.pytorch as spconv
import torch.nn as nn

#from .focal_sparse_conv.focal_sparse_conv import FocalSparseConv
from .focal_sparse_conv.focal_sparse_conv_cuda import FocalSparseConvCUDA as FocalSparseConv
from .focal_sparse_conv.SemanticSeg.pyramid_ffn import PyramidFeat2D
from spconv.core import ConvAlgo


class objDict:
@staticmethod
def to_object(obj: object, **data):
obj.__dict__.update(data)

class ConfigDict:
def __init__(self, name):
self.name = name
def __getitem__(self, item):
return getattr(self, item)


class SparseSequentialBatchdict(spconv.SparseSequential):
def __init__(self, *args, **kwargs):
super(SparseSequentialBatchdict, self).__init__(*args, **kwargs)

def forward(self, input, batch_dict=None):
loss = 0
for k, module in self._modules.items():
if module is None:
continue
if isinstance(module, (FocalSparseConv,)):
input, batch_dict, _loss = module(input, batch_dict)
loss += _loss
else:
input = module(input)
return input, batch_dict, loss


def post_act_block(in_channels, out_channels, kernel_size, indice_key=None, stride=1, padding=0,
conv_type='subm', norm_fn=None):

if conv_type == 'subm':
conv = spconv.SubMConv3d(in_channels, out_channels, kernel_size, bias=False, indice_key=indice_key)
elif conv_type == 'spconv':
conv = spconv.SparseConv3d(in_channels, out_channels, kernel_size, stride=stride, padding=padding,
bias=False, indice_key=indice_key)
elif conv_type == 'inverseconv':
conv = spconv.SparseInverseConv3d(in_channels, out_channels, kernel_size, indice_key=indice_key, bias=False)
else:
raise NotImplementedError

m = spconv.SparseSequential(
conv,
norm_fn(out_channels),
nn.ReLU(True),
)

return m


class SparseBasicBlock(spconv.SparseModule):
expansion = 1

def __init__(self, inplanes, planes, stride=1, norm_fn=None, downsample=None, indice_key=None):
super(SparseBasicBlock, self).__init__()

assert norm_fn is not None
bias = norm_fn is not None
self.conv1 = spconv.SubMConv3d(
inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=bias, indice_key=indice_key
)
self.bn1 = norm_fn(planes)
self.relu = nn.ReLU(True)
self.conv2 = spconv.SubMConv3d(
planes, planes, kernel_size=3, stride=stride, padding=1, bias=bias, indice_key=indice_key
)
self.bn2 = norm_fn(planes)
self.downsample = downsample
self.stride = stride

def forward(self, x):
identity = x

out = self.conv1(x)
out = out.replace_feature(self.bn1(out.features))
out = out.replace_feature(self.relu(out.features))

out = self.conv2(out)
out = out.replace_feature(self.bn2(out.features))

if self.downsample is not None:
identity = self.downsample(x)

out = out.replace_feature(out.features + identity.features)
out = out.replace_feature(self.relu(out.features))

return out


class VoxelBackBone8xFocal(nn.Module):
def __init__(self, model_cfg, input_channels, grid_size, **kwargs):
super().__init__()
self.model_cfg = model_cfg

norm_fn = partial(nn.BatchNorm1d, eps=1e-3, momentum=0.01)

self.sparse_shape = grid_size[::-1] + [1, 0, 0]

self.conv_input = spconv.SparseSequential(
spconv.SubMConv3d(input_channels, 16, 3, padding=1, bias=False, indice_key='subm_input'),
norm_fn(16),
nn.ReLU(True),
)

block = post_act_block

use_img = model_cfg.get('USE_IMG', False)
topk = model_cfg.get('TOPK', True)
threshold = model_cfg.get('THRESHOLD', 0.5)
kernel_size = model_cfg.get('KERNEL_SIZE', 3)
mask_multi = model_cfg.get('MASK_MULTI', False)
skip_mask_kernel = model_cfg.get('SKIP_MASK_KERNEL', False)
skip_mask_kernel_image = model_cfg.get('SKIP_MASK_KERNEL_IMG', False)
enlarge_voxel_channels = model_cfg.get('ENLARGE_VOXEL_CHANNELS', -1)
img_pretrain = model_cfg.get('IMG_PRETRAIN', "../checkpoints/deeplabv3_resnet50_coco-cd0a2569.pth")
use_stages = model_cfg.get('USE_STAGES', [1, 2, 3])

if use_img:
model_cfg_seg=dict(
name='SemDeepLabV3',
backbone='ResNet50',
num_class=21, # pretrained on COCO
args={"feat_extract_layer": ["layer1"],
"pretrained_path": img_pretrain},
channel_reduce={
"in_channels": [256],
"out_channels": [16],
"kernel_size": [1],
"stride": [1],
"bias": [False]
}
)
cfg_dict = ConfigDict('SemDeepLabV3')
objDict.to_object(cfg_dict, **model_cfg_seg)
self.semseg = PyramidFeat2D(optimize=True, model_cfg=cfg_dict)

self.conv_focal_multimodal = FocalSparseConv(16, 16, image_channel=model_cfg_seg['channel_reduce']['out_channels'][0],
topk=topk, threshold=threshold, use_img=True, skip_mask_kernel=skip_mask_kernel_image,
voxel_stride=1, norm_fn=norm_fn, indice_key='spconv_focal_multimodal')

special_spconv_fn = partial(FocalSparseConv, mask_multi=mask_multi, enlarge_voxel_channels=enlarge_voxel_channels,
topk=topk, threshold=threshold, kernel_size=kernel_size, padding=kernel_size//2,
skip_mask_kernel=skip_mask_kernel)
self.use_img = use_img

self.conv1 = SparseSequentialBatchdict(
block(16, 16, 3, norm_fn=norm_fn, padding=1, indice_key='subm1'),
special_spconv_fn(16, 16, voxel_stride=1, norm_fn=norm_fn, indice_key='focal1') if 1 in use_stages else None,
)

self.conv2 =SparseSequentialBatchdict(
# [1600, 1408, 41] <- [800, 704, 21]
block(16, 32, 3, norm_fn=norm_fn, stride=2, padding=1, indice_key='spconv2', conv_type='spconv'),
block(32, 32, 3, norm_fn=norm_fn, padding=1, indice_key='subm2'),
block(32, 32, 3, norm_fn=norm_fn, padding=1, indice_key='subm2'),
special_spconv_fn(32, 32, voxel_stride=2, norm_fn=norm_fn, indice_key='focal2') if 2 in use_stages else None,
)

self.conv3 = SparseSequentialBatchdict(
# [800, 704, 21] <- [400, 352, 11]
block(32, 64, 3, norm_fn=norm_fn, stride=2, padding=1, indice_key='spconv3', conv_type='spconv'),
block(64, 64, 3, norm_fn=norm_fn, padding=1, indice_key='subm3'),
block(64, 64, 3, norm_fn=norm_fn, padding=1, indice_key='subm3'),
special_spconv_fn(64, 64, voxel_stride=4, norm_fn=norm_fn, indice_key='focal3') if 3 in use_stages else None,
)

self.conv4 = SparseSequentialBatchdict(
# [400, 352, 11] <- [200, 176, 5]
block(64, 64, 3, norm_fn=norm_fn, stride=2, padding=(0, 1, 1), indice_key='spconv4', conv_type='spconv'),
block(64, 64, 3, norm_fn=norm_fn, padding=1, indice_key='subm4'),
block(64, 64, 3, norm_fn=norm_fn, padding=1, indice_key='subm4'),
)

last_pad = 0
last_pad = self.model_cfg.get('last_pad', last_pad)
self.conv_out = spconv.SparseSequential(
# [200, 150, 5] -> [200, 150, 2]
spconv.SparseConv3d(64, 128, (3, 1, 1), stride=(2, 1, 1), padding=last_pad,
bias=False, indice_key='spconv_down2'),
norm_fn(128),
nn.ReLU(True),
)
self.num_point_features = 128
self.backbone_channels = {
'x_conv1': 16,
'x_conv2': 32,
'x_conv3': 64,
'x_conv4': 64
}

self.forward_ret_dict = {}

def get_loss(self, tb_dict=None):
loss = self.forward_ret_dict['loss_box_of_pts']
if tb_dict is None:
tb_dict = {}
tb_dict['loss_box_of_pts'] = loss.item()
return loss, tb_dict

def forward(self, batch_dict):
"""
Args:
batch_dict:
batch_size: int
vfe_features: (num_voxels, C)
voxel_coords: (num_voxels, 4), [batch_idx, z_idx, y_idx, x_idx]
Returns:
batch_dict:
encoded_spconv_tensor: sparse tensor
"""
voxel_features, voxel_coords = batch_dict['voxel_features'], batch_dict['voxel_coords']
batch_size = batch_dict['batch_size']
input_sp_tensor = spconv.SparseConvTensor(
features=voxel_features,
indices=voxel_coords.int(),
spatial_shape=self.sparse_shape,
batch_size=batch_size
)

batch_dict['loss_box_of_pts'] = 0

x = self.conv_input(input_sp_tensor)
#from IPython import embed; embed()
#raise ValueError('Stop.')

x_conv1, batch_dict, loss1 = self.conv1(x, batch_dict)

if self.use_img:
x_image = self.semseg(batch_dict['images'])['layer1_feat2d']
x_conv1, batch_dict, loss_img = self.conv_focal_multimodal(x_conv1, batch_dict, x_image)
else:
loss_img = 0

x_conv2, batch_dict, loss2 = self.conv2(x_conv1, batch_dict)
x_conv3, batch_dict, loss3 = self.conv3(x_conv2, batch_dict)
x_conv4, batch_dict, loss4 = self.conv4(x_conv3, batch_dict)

self.forward_ret_dict['loss_box_of_pts'] = loss1 + loss2 + loss3 + loss4 + loss_img
# for detection head
# [200, 176, 5] -> [200, 176, 2]
out = self.conv_out(x_conv4)

batch_dict.update({
'encoded_spconv_tensor': out,
'encoded_spconv_tensor_stride': 8
})
batch_dict.update({
'multi_scale_3d_features': {
'x_conv1': x_conv1,
'x_conv2': x_conv2,
'x_conv3': x_conv3,
'x_conv4': x_conv4,
}
})
batch_dict.update({
'multi_scale_3d_strides': {
'x_conv1': 1,
'x_conv2': 2,
'x_conv3': 4,
'x_conv4': 8,
}
})

return batch_dict

0 comments on commit 7f44dfe

Please sign in to comment.