forked from QuantConnect/Lean
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request QuantConnect#3903 from AlexCatarino/bug-3896-pytho…
…n-api Refactors Python Version of the API
- Loading branch information
Showing
6 changed files
with
655 additions
and
417 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,199 @@ | ||
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals. | ||
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import pandas as pd | ||
from math import isnan | ||
from datetime import datetime | ||
|
||
class Result: | ||
'''Result represents the live or backtest result of a successfully executed algorithm''' | ||
|
||
def __init__(self, json): | ||
'''Creates a new instance of Result''' | ||
tag = 'result' | ||
|
||
# LiveResults special case: | ||
self.LiveMode = 'LiveResults' in json | ||
if self.LiveMode: | ||
tag += 's' | ||
json = json.pop('LiveResults', json) | ||
|
||
result = json.pop(tag, json) | ||
|
||
self.Statistics = Information(result.pop('Statistics', {})) | ||
self.AlphaRuntimeStatistics = Information(result.pop('AlphaRuntimeStatistics', {})) | ||
self.RuntimeStatistics = Information(result.pop('RuntimeStatistics', {})) | ||
self.ClosedTrades = self.__create_closed_trades_table(result) | ||
self.Charts = self.__create_charts_table(result) | ||
self.ProfitLoss = self.__create_profit_loss_table(result) | ||
self.Orders = self.__create_order_table(result) | ||
self.RollingWindow = self.__create_rolling_window_table(result) | ||
self.Information = Information(json) | ||
|
||
def __create_order_table(self, json): | ||
'''Creates a dataframe with the orders information''' | ||
orders = json.pop('Orders', None) | ||
if orders is None: return None | ||
|
||
# In Live results, orders is a list, so convert to dict keyed by Id. | ||
if isinstance(orders, list): | ||
orders = {x['Id']: x for x in orders} | ||
|
||
def __status_int_to_str(value): | ||
if value is None: return None | ||
values = [ 'New', 'Submitted', 'PartiallyFilled', 'Filled', 'Canceled', 'None', 'Invalid', 'CancelPending' ] | ||
return str(values) if value >= len(values) else values[value] | ||
|
||
def __security_type_int_to_str(value): | ||
if value is None: return None | ||
values = [ 'Base', 'Equity', 'Option', 'Commodity', 'Forex', 'Future', 'Cfd', 'Crypto' ] | ||
return str(values) if value >= len(values) else values[value] | ||
|
||
def __type_int_to_str(value): | ||
if value is None: return None | ||
values = [ 'Market', 'Limit', 'StopMarket', 'StopLimit', 'MarketOnOpen', 'MarketOnClose', 'OptionExercise' ] | ||
return str(values) if value >= len(values) else values[value] | ||
|
||
columns = [ | ||
'Id', 'Time', 'SecurityType', 'Symbol', 'PriceCurrency', | ||
'Quantity', 'Direction', 'Price', 'Type', 'Status', 'Tag', | ||
'LastFillTime', 'LastUpdateTime', 'CanceledTime' ] | ||
|
||
if self.LiveMode: | ||
columns += ['DeployId'] | ||
|
||
drop_columns = [ | ||
'BrokerId', 'ContingentId', 'CreatedTime', 'IsMarketable', 'Value', | ||
'AbsoluteQuantity', 'OrderSubmissionData', 'Properties', 'TimeInForce'] | ||
|
||
df = pd.DataFrame([v for k, v in orders.items()], columns = columns + drop_columns) | ||
df = df.set_index('Id').drop(drop_columns, axis=1) | ||
df['Time'] = df['Time'].apply(self.__str_to_datetime) | ||
df['CanceledTime'] = df['CanceledTime'].apply(self.__str_to_datetime) | ||
df['LastFillTime'] = df['LastFillTime'].apply(self.__str_to_datetime) | ||
df['LastUpdateTime'] = df['LastUpdateTime'].apply(self.__str_to_datetime) | ||
df['Symbol'] = df['Symbol'].apply(lambda x: x['ID']) | ||
df['Type'] = df['Type'].apply(__type_int_to_str) | ||
df['Direction'] = df['Direction'].apply(self.__direction_int_to_str) | ||
df['Status'] = df['Status'].apply(__status_int_to_str) | ||
|
||
df['SecurityType'] = df['SecurityType'].apply(__security_type_int_to_str) | ||
return df.dropna(how='all', axis=1) | ||
|
||
def __create_profit_loss_table(self, json): | ||
'''Creates a dataframe with the algorithm P&L''' | ||
profitLoss = json.pop('ProfitLoss', None) | ||
if profitLoss is None: return None | ||
|
||
df = pd.DataFrame({'profit_loss' : profitLoss}) | ||
df.index.name = 'time' | ||
df.index = df.index.map(self.__str_to_datetime) | ||
return df | ||
|
||
def __create_closed_trades_table(self, json): | ||
'''Creates a dataframe with the closed trades information''' | ||
total = json.get('TotalPerformance', None) | ||
if total is None: return None | ||
trades = total.get('ClosedTrades', None) | ||
if trades is None: return None | ||
|
||
df = pd.DataFrame(trades, columns = [ | ||
'Symbol', 'Quantity', 'Direction', 'EntryTime', 'EntryPrice', | ||
'ExitPrice', 'ExitTime', 'Duration', 'EndTradeDrawdown', | ||
'MAE', 'MFE', 'ProfitLoss', 'TotalFees' | ||
]) | ||
df['Symbol'] = df['Symbol'].apply(lambda x: x['ID']) | ||
df['Direction'] = df['Direction'].apply(self.__direction_int_to_str) | ||
df['EntryTime'] = df['EntryTime'].apply(self.__str_to_datetime) | ||
df['ExitTime'] = df['ExitTime'].apply(self.__str_to_datetime) | ||
df['Duration'] = df['ExitTime'] - df['EntryTime'] | ||
return df.set_index('EntryTime') | ||
|
||
def __create_charts_table(self, json): | ||
'''Creates a dataframe with the charts information. | ||
By converting the json into a dataframe, it makes data visualization easier''' | ||
charts = json.pop('Charts', None) | ||
if charts is None: return None | ||
|
||
df_charts = dict() | ||
for name, chart in charts.items(): | ||
# Skip Meta data | ||
if name == 'Meta': continue | ||
columns = list() | ||
for column, series in chart['Series'].items(): | ||
df = pd.DataFrame(series['Values']) | ||
df['x'] = pd.to_datetime(df['x'], unit='s') | ||
df = df.rename(index=str, columns={"x": "time", "y": column}) | ||
columns.append(df.set_index('time')) | ||
if len(columns) > 1: | ||
df = pd.concat(columns, axis = 1, sort = True) | ||
df = df.fillna(method = 'ffill') | ||
df = df.fillna(method = 'bfill') | ||
df_charts[name] = df | ||
return df_charts | ||
|
||
def __create_rolling_window_table(self, json): | ||
'''Creates a dataframe with the rolling statistics information. | ||
By converting the json into a dataframe, it makes data visualization easier''' | ||
rollingWindow = json.pop('RollingWindow', None) | ||
if rollingWindow is None: return None | ||
|
||
series = dict() | ||
if 'TotalPerformance' in json: | ||
window = json['TotalPerformance'] | ||
if window is None: window = dict() | ||
stats = window.get('PortfolioStatistics', dict()) | ||
stats.update(window.get('TradeStatistics', dict())) | ||
series = {'TotalPerformance': pd.Series(stats)} | ||
|
||
for row, window in rollingWindow.items(): | ||
stats = window.get('PortfolioStatistics', dict()) | ||
stats.update(window.get('TradeStatistics', dict())) | ||
series.update({row: pd.Series(stats)}) | ||
|
||
return pd.DataFrame(series).transpose() | ||
|
||
def __direction_int_to_str(self, value): | ||
if value is None: return None | ||
return [ 'Buy', 'Sell', 'Hold' ][value] | ||
|
||
def __str_to_datetime(self, value): | ||
if value is None: return None | ||
if isinstance(value, float) and isnan(value): return None | ||
fmt = '%Y-%m-%dT%H:%M:%SZ' if len(value) == 20 else '%Y-%m-%dT%H:%M:%S.%fZ' | ||
return datetime.strptime(value, fmt) | ||
|
||
|
||
class Information(dict): | ||
def __init__(self, d): | ||
|
||
d = d if d is not None else {} | ||
super().__init__(d) | ||
|
||
self.__repr = '' | ||
|
||
for k, b in d.items(): | ||
a = k.replace(' ','').replace('-','') | ||
if isinstance(b, (list, tuple)): | ||
setattr(self, a, [Information(x) if isinstance(x, dict) else x for x in b]) | ||
elif isinstance(b, dict): | ||
x = Information(b) | ||
setattr(self, a, x) | ||
s = '\n'.join([f' {l}' for l in repr(x).splitlines()]) | ||
self.__repr += f'{a}:\n{s}\n' | ||
else: | ||
setattr(self, a, b) | ||
self.__repr += f'{a}: {b}\n' | ||
|
||
def __repr__(self): | ||
return self.__repr |
This file was deleted.
Oops, something went wrong.
Oops, something went wrong.