forked from PKU-YuanGroup/LanguageBind
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
10 changed files
with
305 additions
and
235 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,47 @@ | ||
|
||
import json | ||
from transformers import MBartForConditionalGeneration, MBartTokenizer, MBartConfig | ||
from hftrim.ModelTrimmers import MBartTrimmer | ||
from hftrim.TokenizerTrimmer import TokenizerTrimmer | ||
|
||
# Load your JSON file | ||
with open('data/phoenix/phoenix_train.json', 'r') as f: | ||
raw_data = json.load(f) | ||
|
||
# Extract "polish_mplug" values | ||
data = [] | ||
|
||
for key, value in raw_data.items(): | ||
polish_mplug = value.get('polish_mplug', '').strip() | ||
if polish_mplug: | ||
data.append(polish_mplug) | ||
|
||
# Initialize tokenizer and model | ||
tokenizer = MBartTokenizer.from_pretrained("facebook/mbart-large-cc25", src_lang="de_DE", tgt_lang="de_DE") | ||
model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25") | ||
configuration = model.config | ||
|
||
# Trim tokenizer | ||
tt = TokenizerTrimmer(tokenizer) | ||
tt.make_vocab(data) | ||
tt.make_tokenizer() | ||
|
||
# Trim model | ||
mt = MBartTrimmer(model, configuration, tt.trimmed_tokenizer) | ||
mt.make_weights(tt.trimmed_vocab_ids) | ||
mt.make_model() | ||
|
||
new_tokenizer = tt.trimmed_tokenizer | ||
new_model = mt.trimmed_model | ||
|
||
# Save the trimmed tokenizer and model | ||
new_tokenizer.save_pretrained('pretrain_models/MBart_trimmed') | ||
new_model.save_pretrained('pretrain_models/MBart_trimmed') | ||
|
||
# Configure and save the MyTran model | ||
configuration = MBartConfig.from_pretrained('pretrain_models/MBart_trimmed/config.json') | ||
configuration.vocab_size = new_model.config.vocab_size | ||
mytran_model = MBartForConditionalGeneration._from_config(config=configuration) | ||
mytran_model.model.shared = new_model.model.shared | ||
|
||
mytran_model.save_pretrained('pretrain_models/mytran/') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,75 +1,153 @@ | ||
from torch import Tensor | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
import math | ||
from torch import nn | ||
from transformers import MBartForConditionalGeneration, AutoConfig, PreTrainedModel | ||
from transformers.modeling_outputs import BaseModelOutput | ||
import torchvision | ||
from transformers import MBartForConditionalGeneration, MBartConfig | ||
from transformers.models.mbart.modeling_mbart import shift_tokens_right | ||
import numpy as np | ||
from pathlib import Path | ||
|
||
class VideoTranslationModel(PreTrainedModel): | ||
def __init__(self, clip_model, mbart_model_name_or_path): | ||
# Initialize with the MBart configuration | ||
config = AutoConfig.from_pretrained(mbart_model_name_or_path) | ||
super().__init__(config) | ||
def make_resnet(name='resnet18'): | ||
if name == 'resnet18': | ||
model = torchvision.models.resnet18(pretrained=True) | ||
elif name == 'resnet34': | ||
model = torchvision.models.resnet34(pretrained=True) | ||
elif name == 'resnet50': | ||
model = torchvision.models.resnet50(pretrained=True) | ||
elif name == 'resnet101': | ||
model = torchvision.models.resnet101(pretrained=True) | ||
else: | ||
raise Exception('Unsupported resnet model.') | ||
inchannel = model.fc.in_features | ||
model.fc = nn.Identity() | ||
return model | ||
|
||
self.clip_model = clip_model # Your CLIP video encoder | ||
self.mbart_model = MBartForConditionalGeneration.from_pretrained(mbart_model_name_or_path) | ||
|
||
# If encoder and MBart hidden sizes differ, add a projection layer | ||
if self.clip_model.config.projection_dim != self.mbart_model.config.d_model: | ||
self.encoder_projection = nn.Linear( | ||
self.clip_model.config.projection_dim, self.mbart_model.config.d_model | ||
) | ||
else: | ||
self.encoder_projection = nn.Identity() | ||
# Scaling factor for embeddings (optional) | ||
self.embed_scale = math.sqrt(self.mbart_model.config.d_model) | ||
class TemporalConv(nn.Module): | ||
def __init__(self, input_size, hidden_size, conv_type=2): | ||
super(TemporalConv, self).__init__() | ||
self.input_size = input_size | ||
self.hidden_size = hidden_size | ||
self.conv_type = conv_type | ||
|
||
if self.conv_type == 0: | ||
self.kernel_size = ['K3'] | ||
elif self.conv_type == 1: | ||
self.kernel_size = ['K5', "P2"] | ||
elif self.conv_type == 2: | ||
self.kernel_size = ['K5', "P2", 'K5', 'P2'] | ||
|
||
def forward(self, pixel_values, labels=None, decoder_input_ids=None, decoder_attention_mask=None): | ||
# Obtain encoder outputs from the CLIP model | ||
with torch.no_grad(): | ||
encoder_hidden_states = self.clip_model.encode_image(pixel_values) | ||
# encoder_hidden_states shape: (batch_size, seq_len, hidden_size) | ||
modules = [] | ||
for layer_idx, ks in enumerate(self.kernel_size): | ||
input_sz = self.input_size if layer_idx == 0 else self.hidden_size | ||
if ks[0] == 'P': | ||
modules.append(nn.MaxPool1d(kernel_size=int(ks[1]), ceil_mode=False)) | ||
elif ks[0] == 'K': | ||
modules.append(nn.Conv1d(input_sz, self.hidden_size, kernel_size=int(ks[1]), stride=1, padding=0)) | ||
modules.append(nn.BatchNorm1d(self.hidden_size)) | ||
modules.append(nn.ReLU(inplace=True)) | ||
self.temporal_conv = nn.Sequential(*modules) | ||
|
||
def forward(self, x): | ||
x = self.temporal_conv(x.permute(0,2,1)) | ||
return x.permute(0,2,1) | ||
|
||
# Project encoder outputs to match MBart's hidden size | ||
encoder_hidden_states = self.encoder_projection(encoder_hidden_states) | ||
# Apply scaling | ||
encoder_hidden_states = self.embed_scale * encoder_hidden_states | ||
class FeatureExtracter(nn.Module): | ||
def __init__(self, frozen=False): | ||
super(FeatureExtracter, self).__init__() | ||
self.conv_2d = make_resnet(name='resnet18') | ||
self.conv_1d = TemporalConv(input_size=512, hidden_size=1024, conv_type=2) | ||
if frozen: | ||
for param in self.conv_2d.parameters(): | ||
param.requires_grad = False | ||
|
||
# Create an attention mask for the encoder (assuming no padding) | ||
encoder_attention_mask = torch.ones( | ||
encoder_hidden_states.size()[:-1], dtype=torch.long, device=encoder_hidden_states.device | ||
def forward(self, src: Tensor, src_length_batch): | ||
src = self.conv_2d(src) | ||
x_batch = [] | ||
start = 0 | ||
for length in src_length_batch: | ||
end = start + length | ||
x_batch.append(src[start:end]) | ||
start = end | ||
x = nn.utils.rnn.pad_sequence(x_batch, batch_first=True) | ||
x = self.conv_1d(x) | ||
return x | ||
|
||
class V_encoder(nn.Module): | ||
def __init__(self, emb_size, feature_size): | ||
super(V_encoder, self).__init__() | ||
self.src_emb = nn.Linear(feature_size, emb_size) | ||
self.bn_ac = nn.Sequential( | ||
nn.BatchNorm1d(emb_size), | ||
nn.ReLU(inplace=True) | ||
) | ||
print(encoder_hidden_states.shape) | ||
for m in self.modules(): | ||
if isinstance(m, (nn.Conv1d,nn.Linear)): | ||
nn.init.xavier_uniform_(m.weight, gain=nn.init.calculate_gain('relu')) | ||
elif isinstance(m, nn.BatchNorm1d): | ||
nn.init.constant_(m.weight, 1) | ||
nn.init.constant_(m.bias, 0) | ||
|
||
def forward(self, src: Tensor): | ||
src = self.src_emb(src) | ||
return src | ||
|
||
def config_decoder(): | ||
from transformers import AutoConfig | ||
return MBartForConditionalGeneration.from_pretrained( | ||
"pretrain_models/MBart_trimmed/", | ||
ignore_mismatched_sizes=True, | ||
config=AutoConfig.from_pretrained(Path('pretrain_models/MBart_trimmed/config.json')) | ||
) | ||
|
||
# Prepare encoder outputs | ||
encoder_outputs = BaseModelOutput(last_hidden_state=encoder_hidden_states) | ||
class gloss_free_model(nn.Module): | ||
def __init__(self, embed_dim=1024, pretrain=None, embed_layer=True): | ||
super(gloss_free_model, self).__init__() | ||
self.mbart = config_decoder() | ||
if embed_layer: | ||
self.sign_emb = V_encoder(emb_size=embed_dim, feature_size=768) | ||
self.embed_scale = math.sqrt(embed_dim) | ||
else: | ||
self.sign_emb = nn.Identity() | ||
self.embed_scale = 1.0 | ||
|
||
# If decoder_input_ids are not provided, generate them from labels | ||
if decoder_input_ids is None and labels is not None: | ||
decoder_input_ids = self.mbart_model.prepare_decoder_input_ids_from_labels(labels) | ||
def forward(self, input_embeds, attention_mask, tgt_input): | ||
# DEBUG PRINTS: | ||
# print("DEBUG FORWARD in gloss_free_model") | ||
# print("input_embeds.shape:", input_embeds.shape) | ||
# print("attention_mask.shape:", attention_mask.shape) | ||
# print("tgt_input['input_ids'].shape:", tgt_input["input_ids"].shape) | ||
# print("tgt_input['input_ids'] min/max:", tgt_input["input_ids"].min().item(), tgt_input["input_ids"].max().item()) | ||
|
||
# Pass encoder outputs and masks to the MBart model | ||
outputs = self.mbart_model( | ||
encoder_outputs=encoder_outputs, | ||
input_embeds = self.embed_scale * self.sign_emb(input_embeds) | ||
|
||
decoder_input_ids = shift_tokens_right( | ||
tgt_input["input_ids"], pad_token_id=self.mbart.config.pad_token_id | ||
) | ||
decoder_attention_mask = (decoder_input_ids != self.mbart.config.pad_token_id).long() | ||
|
||
# print("decoder_input_ids.shape:", decoder_input_ids.shape) | ||
# print("decoder_input_ids min/max:", decoder_input_ids.min().item(), decoder_input_ids.max().item()) | ||
# print("decoder_attention_mask.shape:", decoder_attention_mask.shape) | ||
|
||
out = self.mbart( | ||
inputs_embeds=input_embeds, | ||
attention_mask=attention_mask, | ||
decoder_input_ids=decoder_input_ids, | ||
decoder_attention_mask=decoder_attention_mask, | ||
labels=labels, | ||
use_cache=False, | ||
labels=tgt_input["input_ids"], | ||
return_dict=True, | ||
) | ||
return outputs | ||
return out["loss"], out["logits"] | ||
|
||
def generate(self, pixel_values, max_length=50, num_beams=5): | ||
encoder_hidden_states = self.clip_model.encode_image(pixel_values) | ||
encoder_hidden_states = self.encoder_projection(encoder_hidden_states) | ||
encoder_hidden_states = self.embed_scale * encoder_hidden_states | ||
encoder_attention_mask = torch.ones( | ||
encoder_hidden_states.size()[:-1], dtype=torch.long, device=encoder_hidden_states.device | ||
) | ||
encoder_outputs = BaseModelOutput(last_hidden_state=encoder_hidden_states) | ||
generated_tokens = self.mbart_model.generate( | ||
encoder_outputs=encoder_outputs, | ||
attention_mask=encoder_attention_mask, | ||
max_length=max_length, | ||
def generate(self, src_input, max_new_tokens, num_beams, decoder_start_token_id): | ||
inputs_embeds, attention_mask = self.share_forward(src_input) | ||
out = self.mbart.generate( | ||
inputs_embeds=inputs_embeds, | ||
attention_mask=attention_mask, | ||
max_new_tokens=max_new_tokens, | ||
num_beams=num_beams, | ||
decoder_start_token_id=decoder_start_token_id | ||
) | ||
return generated_tokens | ||
return out |
Oops, something went wrong.