A tiny async production-ready wrapper for OpenAI GPT-3 API.
This is an unofficial library and has no affiliations with OpenAI
npm install openai
yarn add openai
import { OpenAI } from 'openai';
// or the commonJS way:
const { OpenAI } = require('openai');
// new OpenAI(apikey: string, organization?: string, version?: string)
const openai = new OpenAI(process.env.API_KEY, 'my-organization');
Get all engines:
const engines = await openai.getEngines();
Get specific engine:
const engine = await openai.getEngine('curie');
Make a completion:
const completion = await openai.complete('curie', {
prompt: 'Q: Hello\nA:',
user: 'user-123'
});
The options argument(2nd) properties follow the exactly same names as shown on official docs.
Make a completion from a fine-tuned model:
const completion = await openai.completeFromModel('FINE_TUNED_MODEL', {
prompt: 'Q: Hello\nA:'
});
Make a completion and stream the response:
// Very experimental! Don't use on production!!!
// This API may change at any time
const stream = await openai.completionTextStream('curie', {
prompt: 'Q: Hello\nA:',
user: 'user-123'
});
stream.pipe(response)
Make a content filter:
const isSafe = (await openai.contentFilter('hi I am cool')) === 0;
Make a search:
const search = await openai.search('curie', {
query: 'the president',
documents: [
'whitehouse',
'school',
'hospital'
]
});
The options argument(2nd) properties follow the exactly same names as shown on official docs.
Classify a document:
const classification = await openai.classify({
examples: [
['A happy moment', 'Positive'],
['I am sad.', 'Negative'],
['I am feeling awesome', 'Positive']
],
labels: ['Positive', 'Negative', 'Neutral'],
query: 'It is a raining day :(',
search_model: 'ada',
model: 'curie'
});
The argument properties follow the exactly same names as shown on official docs.
Answer a question:
const answer = await openai.answer({
documents: ['Puppy A is happy.', 'Puppy B is sad.'],
question: 'which puppy is happy?',
search_model: 'ada',
model: 'curie',
examples_context: 'In 2017, U.S. life expectancy was 78.6 years.',
examples: [['What is human life expectancy in the United States?','78 years.']],
});
The argument properties follow the exactly same names as shown on official docs.
Get all files:
const files = await openai.getFiles();
Upload a single file:
const result = await openai.uploadFile('filename.json', await fs.readFileSync('somefile.json'), 'fine-tune');
Get a single file by id:
const file = await openai.getFile('file-29u89djwq');
Delete a single file by id:
await openai.deleteFile('file-29u89djwq');
Fine-tune from a file:
const result = await openai.finetune({
training_file: 'file-29u89djwq'
});
The argument properties follow the exactly same names as shown on official docs.
Get all fine-tunes:
const finetunes = await openai.getFinetunes();
Get a specific fine-tune:
const finetune = await openai.getFinetune('ftjob-AF1WoRqd3aJ');
Cancel a fine-tune:
await openai.cancelFinetune('ftjob-AF1WoRqd3aJ');
Get fine-tune events of a fine-tune:
const events = await openai.getFinetuneEvents('ftjob-AF1WoRqd3aJ');