Skip to content

eltociear/Emu

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Emu is a Large Multimodal Model (LMM) trained with a unified autoregressive objective, i.e., predict-the-next-element, including both visual embeddings and textual tokens. Trained under this objective, Emu can serve as a generalist interface for both image-to-text and text-to-image tasks.

Generalist Interface

Emu serves as a generalist interface capable of diverse multimodal tasks, such as image captioning, image/video question answering, and text-to-image generation, together with new abilities like in-context text and image generation, and image blending:

Setup

Clone this repository and install required packages:

git clone https://github.com/baaivision/Emu
cd Emu

pip install -r requirements.txt

Model Weights

We release the pretrained and instruction-tuned weights of Emu. Our weights are subject to LLaMA's license.

Model name Weight
Emu 🤗 HF link (27GB)
Emu-I 🤗 HF link (27GB)

Inference

At present, we provide inference code for image captioning and visual question answering:

python inference.py --instruct --ckpt-path $Instruct_CKPT_PATH

Acknowledgement

We thank the great work from LLaMA, BLIP-2, Stable Diffusion, and FastChat.

Citation

If you find Emu useful for your research and applications, please consider starring this repository and citing:

@article{Emu,
  title={Generative Pretraining in Multimodality},
  author={Sun, Quan and Yu, Qiying and Cui, Yufeng and Zhang, Fan and Zhang, Xiaosong and Wang, Yueze and Gao, Hongcheng and Liu, Jingjing and Huang, Tiejun and Wang, Xinlong},
  publisher={arXiv:2307.05222},
  year={2023},
}

Misc

Stargazers repo roster for @baaivision/Emu

Forkers repo roster for @baaivision/Emu

Star History Chart

About

Emu: An Open Multimodal Generalist

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%