forked from PacktPublishing/3D-Deep-Learning-with-Python
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Lilit Yolyan
committed
Jun 16, 2022
1 parent
16fbc28
commit d10e5c9
Showing
7 changed files
with
110 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
[submodule "chap9/chap9/synsin"] | ||
path = chap9/chap9/synsin | ||
url = https://github.com/facebookresearch/synsin |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,67 @@ | ||
import matplotlib.pyplot as plt | ||
|
||
import quaternion | ||
import torch | ||
import torch.nn as nn | ||
import torchvision.transforms as transforms | ||
|
||
from PIL import Image | ||
from set_up_model_for_inference import synsin_model | ||
|
||
|
||
def inference(path_to_model, test_image, save_path): | ||
model_to_test = synsin_model(path_to_model) | ||
# Load the image | ||
transform = transforms.Compose([ | ||
transforms.Resize((256,256)), | ||
transforms.ToTensor(), | ||
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) | ||
|
||
|
||
im = Image.open(test_image) | ||
im = transform(im) | ||
|
||
# Parameters for the transformation | ||
theta = -0.15 | ||
phi = -0.1 | ||
tx = 0 | ||
ty = 0 | ||
tz = 0.1 | ||
|
||
RT = torch.eye(4).unsqueeze(0) | ||
# Set up rotation | ||
RT[0,0:3,0:3] = torch.Tensor(quaternion.as_rotation_matrix(quaternion.from_rotation_vector([phi, theta, 0]))) | ||
# Set up translation | ||
RT[0,0:3,3] = torch.Tensor([tx, ty, tz]) | ||
|
||
batch = { | ||
'images' : [im.unsqueeze(0)], | ||
'cameras' : [{ | ||
'K' : torch.eye(4).unsqueeze(0), | ||
'Kinv' : torch.eye(4).unsqueeze(0) | ||
}] | ||
} | ||
|
||
# Generate a new view at the new transformation | ||
with torch.no_grad(): | ||
pred_imgs = model_to_test.model.module.forward_angle(batch, [RT]) | ||
depth = nn.Sigmoid()(model_to_test.model.module.pts_regressor(batch['images'][0].cuda())) | ||
|
||
fig, axis = plt.subplots(1,3, figsize=(10,20)) | ||
axis[0].axis('off') | ||
axis[1].axis('off') | ||
axis[2].axis('off') | ||
|
||
axis[0].imshow(im.permute(1,2,0) * 0.5 + 0.5) | ||
axis[0].set_title('Input Image') | ||
axis[1].imshow(pred_imgs[0].squeeze().cpu().permute(1,2,0).numpy() * 0.5 + 0.5) | ||
axis[1].set_title('Generated Image') | ||
axis[2].imshow(depth.squeeze().cpu().clamp(max=0.04)) | ||
axis[2].set_title('Predicted Depth') | ||
|
||
plt.savefig(save_path) | ||
|
||
if __name__ == '__main__': | ||
inference(path_to_model= './synsin/modelcheckpoints/realestate/zbufferpts.pth', | ||
test_image='appartement.JPG', | ||
save_path='output.png') |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,38 @@ | ||
import torch | ||
import torch.nn as nn | ||
|
||
import sys | ||
sys.path.insert(0, './synsin') | ||
|
||
import os | ||
os.environ['DEBUG'] = '0' | ||
from synsin.models.networks.sync_batchnorm import convert_model | ||
from synsin.models.base_model import BaseModel | ||
from synsin.options.options import get_model | ||
|
||
# Set up the models | ||
def synsin_model(model_path): | ||
|
||
torch.backends.cudnn.enabled = True | ||
|
||
opts = torch.load(model_path)['opts'] | ||
opts.render_ids = [1] | ||
|
||
model = get_model(opts) | ||
|
||
torch_devices = [int(gpu_id.strip()) for gpu_id in opts.gpu_ids.split(",")] | ||
|
||
if 'sync' in opts.norm_G: | ||
model = convert_model(model) | ||
model = nn.DataParallel(model, torch_devices[0:1]).cuda() | ||
else: | ||
model = nn.DataParallel(model, torch_devices[0:1]).cuda() | ||
|
||
# Load the original model to be tested | ||
model_to_test = BaseModel(model, opts) | ||
model_to_test.load_state_dict(torch.load(model_path)['state_dict']) | ||
model_to_test.eval() | ||
|
||
print("Loaded model") | ||
|
||
return model_to_test |
Submodule synsin
added at
501ec4