Skip to content

Commit

Permalink
Avoid rearranging all caches (openai#1483)
Browse files Browse the repository at this point in the history
* avoid rearranging all kv_caches

* avoid calculating the same kv_cache from cross attn

* Update decoding.py

* linter fix

---------

Co-authored-by: Jong Wook Kim <[email protected]>
  • Loading branch information
wangchou and jongwook authored Jul 6, 2023
1 parent f572f21 commit b91c907
Showing 1 changed file with 9 additions and 6 deletions.
15 changes: 9 additions & 6 deletions whisper/decoding.py
Original file line number Diff line number Diff line change
Expand Up @@ -146,6 +146,10 @@ def __init__(self, model: "Whisper", initial_token_length: int):
self.kv_cache = {}
self.hooks = []

key_modules = [block.attn.key for block in self.model.decoder.blocks]
value_modules = [block.attn.value for block in self.model.decoder.blocks]
self.kv_modules = key_modules + value_modules

def logits(self, tokens: Tensor, audio_features: Tensor) -> Tensor:
if not self.kv_cache:
self.kv_cache, self.hooks = self.model.install_kv_cache_hooks()
Expand All @@ -164,9 +168,10 @@ def cleanup_caching(self):
self.hooks = []

def rearrange_kv_cache(self, source_indices):
for module, tensor in self.kv_cache.items():
# update the key/value cache to contain the selected sequences
self.kv_cache[module] = tensor[source_indices].detach()
if source_indices != list(range(len(source_indices))):
for module in self.kv_modules:
# update the key/value cache to contain the selected sequences
self.kv_cache[module] = self.kv_cache[module][source_indices].detach()


class SequenceRanker:
Expand Down Expand Up @@ -668,7 +673,6 @@ def _detect_language(self, audio_features: Tensor, tokens: Tensor):
return languages, lang_probs

def _main_loop(self, audio_features: Tensor, tokens: Tensor):
assert audio_features.shape[0] == tokens.shape[0]
n_batch = tokens.shape[0]
sum_logprobs: Tensor = torch.zeros(n_batch, device=audio_features.device)
no_speech_probs = [np.nan] * n_batch
Expand Down Expand Up @@ -721,8 +725,7 @@ def run(self, mel: Tensor) -> List[DecodingResult]:
)
]

# repeat the audio & text tensors by the group size, for beam search or best-of-n sampling
audio_features = audio_features.repeat_interleave(self.n_group, dim=0)
# repeat text tensors by the group size, for beam search or best-of-n sampling
tokens = tokens.repeat_interleave(self.n_group, dim=0).to(audio_features.device)

# call the main sampling loop
Expand Down

0 comments on commit b91c907

Please sign in to comment.