forked from OpenGenus/cosmos
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added code for decision tree using information gain
- Loading branch information
1 parent
01049f4
commit c17bdcf
Showing
1 changed file
with
143 additions
and
0 deletions.
There are no files selected for viewing
143 changes: 143 additions & 0 deletions
143
code/artificial_intelligence/src/decision_tree/Decision_Trees_Information_Gain.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,143 @@ | ||
from math import log | ||
import numpy as np | ||
from collections import Counter | ||
|
||
class Node: | ||
def __init__(self): | ||
self.split_column=None | ||
self.split_value=None | ||
self.left=None | ||
self.right=None | ||
self.node_def=True | ||
self.label=None | ||
|
||
class decision_tree: | ||
|
||
def __init__(self): | ||
self.head=Node() | ||
self.max_depth=3 | ||
self.root_entropy=1 | ||
self.min_samples=0 | ||
|
||
def train(self,x_train,y_train): | ||
self.head=self.build(self.head,x_train,y_train,self.root_entropy,1) | ||
|
||
def build(self,current_node,x_train,y_train,entropy_parent,cur_depth): | ||
if(cur_depth>self.max_depth or len(y_train)<=self.min_samples ): | ||
temp_node=Node() | ||
temp_node.node_def=False | ||
return temp_node | ||
|
||
row_length=len(x_train) | ||
col_length=len(x_train[0]) | ||
count={} | ||
prob={} | ||
entropy={} | ||
information_gain={} | ||
weighted_avg={} | ||
output_set=set(y_train) | ||
|
||
for i in range(0,col_length): | ||
count[i]={} | ||
prob[i]={} | ||
entropy[i]={} | ||
s=set(x_train[:,i]) | ||
for j in s: | ||
count[i][j]=0 | ||
entropy[i][j]=0 | ||
for k in output_set: | ||
count[i][j+"and"+k]=0 | ||
prob[i][j+"and"+k]=0 | ||
|
||
for i in range(0,col_length): | ||
for j in range(0,row_length): | ||
count[i][x_train[j][i]]=count[i][x_train[j][i]]+1 | ||
count[i][x_train[j][i]+"and"+y_train[j]]=count[i][x_train[j][i]+"and"+y_train[j]]+1 | ||
|
||
for i in range(0,col_length): | ||
s=set(x_train[:,i]) | ||
weighted_avg[i]=0 | ||
temp_sum=0 | ||
for j in s: | ||
for k in output_set: | ||
prob[i][j+"and"+k]=count[i][j+"and"+k]/count[i][j] | ||
if(prob[i][j+"and"+k]): | ||
entropy[i][j]=entropy[i][j]+prob[i][j+"and"+k]*(log(prob[i][j+"and"+k])/log(2)) | ||
if(entropy[i][j]): | ||
entropy[i][j]=entropy[i][j]*-1 | ||
|
||
weighted_avg[i]=weighted_avg[i]+entropy[i][j]*count[i][j] | ||
temp_sum=temp_sum+count[i][j] | ||
weighted_avg[i]=weighted_avg[i]/temp_sum | ||
information_gain[i]=entropy_parent-weighted_avg[i] | ||
|
||
max_key=max(information_gain,key=information_gain.get) | ||
split_set=set(x_train[:,max_key]) | ||
split_value=None | ||
|
||
for i in split_set: | ||
split_value=i | ||
break | ||
|
||
x_train_left=[] | ||
x_train_right=[] | ||
y_train_left=[] | ||
y_train_right=[] | ||
split_data_left=[] | ||
split_data_right=[] | ||
|
||
for j in range(0,row_length): | ||
if(x_train[j,max_key]==split_value): | ||
split_data_left.append(j) | ||
else: | ||
split_data_right.append(j) | ||
|
||
x_train_left=x_train[split_data_left] | ||
y_train_left=y_train[split_data_left] | ||
x_train_right=x_train[split_data_right] | ||
y_train_right=y_train[split_data_right] | ||
current_node.split_column=max_key | ||
current_node.split_value=split_value | ||
temp_dict={} | ||
|
||
for i in y_train: | ||
temp_dict[i]=0 | ||
for i in y_train: | ||
temp_dict[i]=temp_dict[i]+1 | ||
|
||
current_node.label=Counter(temp_dict).most_common(1)[0][0] | ||
current_node.left=Node() | ||
current_node.right=Node() | ||
current_node.left=self.build(current_node.left,x_train_left,y_train_left,entropy[current_node.split_column][current_node.split_value],cur_depth+1) | ||
current_node.right=self.build(current_node.right,x_train_right,y_train_right,entropy[current_node.split_column][current_node.split_value],cur_depth+1) | ||
|
||
return current_node | ||
|
||
|
||
def predict(self,test): | ||
temp_list=[] | ||
for i in test: | ||
temp_list.append(self.test_fun(self.head,i)) | ||
return temp_list | ||
|
||
def test_fun(self,cur_node,test): | ||
|
||
if(cur_node.left.node_def is False and cur_node.right.node_def is False): | ||
return cur_node.label | ||
|
||
if(test[cur_node.split_column]==cur_node.split_value): | ||
return self.test_fun(cur_node.left,test) | ||
else: | ||
return self.test_fun(cur_node.right,test) | ||
|
||
|
||
|
||
x_train=[["Steep","Bumpy","Yes"],["Steep","Smooth","Yes"],["Flat","Bumpy","No"],["Steep","Smooth","No"]] | ||
y_train=["Slow","Slow","Fast","Fast"] | ||
|
||
x_train=np.array(x_train) | ||
y_train=np.array(y_train) | ||
|
||
clf=decision_tree() | ||
clf.train(x_train,y_train) | ||
print(clf.predict(x_train)) |