├── .vscode/
│ ├── launch.json
│ └── settings.json
├── analysis/
├── check_points/
│ └── Session7_assignment_vgg.h5
├── configs/
│ ├── basic_config.py
│ └── basic_config_Session6.py
├── data/
│ ├── base_data_utils.py
│ ├── data_loaders/
│ │ └── base_data_loader.py
│ ├── data_transforms/
│ │ └── base_data_transforms.py
│ └── datasets/
│ └── MNIST/
│ ├── processed/
│ │ ├── test.pt
│ │ └── training.pt
│ └── raw/
│ ├── t10k-images-idx3-ubyte
│ ├── t10k-images-idx3-ubyte.gz
│ ├── t10k-labels-idx1-ubyte
│ ├── t10k-labels-idx1-ubyte.gz
│ ├── train-images-idx3-ubyte
│ ├── train-images-idx3-ubyte.gz
│ ├── train-labels-idx1-ubyte
│ └── train-labels-idx1-ubyte.gz
├── dev.env
├── docs/
├── draw_project_dir_tree.py
├── LICENSE
├── logs/
│ └── project1_test.txt
├── main.py
├── models/
│ ├── activation_functions/
│ ├── base_network_utils.py
│ ├── evaluator.py
│ ├── learning_rates/
│ ├── losses/
│ ├── model_builder.py
│ ├── networks/
│ │ ├── cifar10_dialation_dsc.py
│ │ ├── cifar10_dialation_dsc_vgg.py
│ │ ├── custom_layers/
│ │ │ └── ghost_batch_norm.py
│ │ ├── mnist_ghost_bn_se.py
│ │ └── mnist_normal_bn_se.py
│ ├── optimizers/
│ └── trainer.py
├── orchestrators/
│ ├── __init__.py
│ ├── base_orchestrator.py
│ ├── session6_assignment .ipynb
│ ├── Session7_assignment_V2.ipynb
│ ├── Session7_assignment_V3.ipynb
│ └── Session7_assignment_vgg_final.ipynb
├── README.md
├── requirements.txt
├── setup.py
├── unit_tests/
└── utils/
├── logger_utils.py
├── misc_utils.py
└── visualization_utils.py
Whenever we need to create a new deep learning project, you need to update/create following files.
- orchestrators/<orchestrator.py> - Orchestrator is the file which is ipynb file which interact with all other files in the project and make things done - Create/update required for specific project
- basic_config.py - This is a configuration file which has most of the configuration values needed for the entire project - Create/update required for specific project
- models/networks/<network_architecture>.py - This is the file where you need to define the DNN (ANN/CNN/RNN/LSTMs/GRUs/GANs) architecture - Create/update required for specific project
- models/networks/custom_layers/<custom_layer>.py - Customer layers are defined in this location. - Create/update required for specific project (optional)
- logs/<project_log.txt> - This is where logs of the project are stored.
- checkpoints/<project_model.h5> - This is where models can be saved.
- And other dir/file names in the above directory tree are self explanatory based on their file name
PyTorch