Skip to content

expersso/OECD

Repository files navigation

OECD

CRAN_Status_Badge Travis-CI Build Status codecov.io Cranlogs Downloads

Introduction

The OECD package allows the user to download data from the OECD’s API in a dynamic and reproducible way.

The package can be installed from either CRAN or Github (development version):

# from CRAN
install.packages("OECD")

# from Github
library(devtools)
install_github("expersso/OECD")

library(OECD)

How to use the package

The best way to use the package is to use the OECD Data Explorer to both browse available datasets and filter specific datasets.

In this example we will use data National Accounts at a Glance Chapter 1: GDP:

After filtering the data using the in-browser data explorer, click the “Developer API” button as seen in the screenshot below.

We extract the first string (respresenting the dataset as a whole) and the second string (representing the filter we’ve applied):

dataset <- "OECD.SDD.NAD,DSD_NAAG@DF_NAAG_I,1.0"
filter <- "A.USA+EU.B1GQ_R_POP+B1GQ_R_GR.USD_PPP_PS+PC."

We then use the get_dataset function to retrieve the data:

df <- get_dataset(dataset, filter)
head(df)
  ACCOUNTING_ENTRY ADJUSTMENT CHAPTER CONF_STATUS CONSOLIDATION
1                B          N  NAAG_I           F            _Z
2                B          N  NAAG_I           F            _Z
3                B          N  NAAG_I           F            _Z
4                B          N  NAAG_I           F            _Z
5                B          N  NAAG_I           F            _Z
6                B          N  NAAG_I           F            _Z
  COUNTERPART_AREA COUNTERPART_SECTOR CURRENCY DECIMALS FREQ INSTR_ASSET
1                D                 S1       _Z        2    A          _Z
2                D                 S1       _Z        2    A          _Z
3                D                 S1       _Z        2    A          _Z
4                D                 S1       _Z        2    A          _Z
5                D                 S1       _Z        2    A          _Z
6                D                 S1       _Z        2    A          _Z
    MEASURE OBS_STATUS         ObsValue PRICE_BASE REF_AREA REF_YEAR_PRICE
1 B1GQ_R_GR          A 1.76202213801051          L       EU           <NA>
2 B1GQ_R_GR          A 2.65890962083748          L       EU           <NA>
3 B1GQ_R_GR          A 3.00387127627695          L       EU           <NA>
4 B1GQ_R_GR          A 2.94990334327997          L       EU           <NA>
5 B1GQ_R_GR          A 3.86436536858204          L       EU           <NA>
6 B1GQ_R_GR          A 2.13343923659157          L       EU           <NA>
  SECTOR TIME_PERIOD TRANSACTION TRANSFORMATION UNIT_MEASURE UNIT_MULT
1     S1        1996        B1GQ             G1           PC         0
2     S1        1997        B1GQ             G1           PC         0
3     S1        1998        B1GQ             G1           PC         0
4     S1        1999        B1GQ             G1           PC         0
5     S1        2000        B1GQ             G1           PC         0
6     S1        2001        B1GQ             G1           PC         0

We select the relevant variables:

df <- df |>
  subset(select = c(REF_AREA, MEASURE, UNIT_MEASURE, TIME_PERIOD, ObsValue)) |>
  transform(
    ObsValue = as.numeric(ObsValue),
    TIME_PERIOD = as.numeric(TIME_PERIOD)
  )

names(df) <- tolower(names(df))

head(df)
  ref_area   measure unit_measure time_period obsvalue
1       EU B1GQ_R_GR           PC        1996 1.762022
2       EU B1GQ_R_GR           PC        1997 2.658910
3       EU B1GQ_R_GR           PC        1998 3.003871
4       EU B1GQ_R_GR           PC        1999 2.949903
5       EU B1GQ_R_GR           PC        2000 3.864365
6       EU B1GQ_R_GR           PC        2001 2.133439

It’s not immediately clear what the values of the variables measure and unit_measure represent, so we fetch a data dictionary and join in to the dataset:

data_structure <- get_data_structure(dataset)
str(data_structure, max.level = 1)
List of 26
 $ VAR_DESC           :'data.frame':    32 obs. of  2 variables:
 $ CL_ACCOUNTING_ENTRY:'data.frame':    11 obs. of  2 variables:
 $ CL_ACTIVITY_ISIC4  :'data.frame':    958 obs. of  2 variables:
 $ CL_ADJUSTMENT      :'data.frame':    17 obs. of  2 variables:
 $ CL_AREA            :'data.frame':    469 obs. of  2 variables:
 $ CL_COICOP_99       :'data.frame':    500 obs. of  2 variables:
 $ CL_CURRENCY        :'data.frame':    238 obs. of  2 variables:
 $ CL_PRICES          :'data.frame':    14 obs. of  2 variables:
 $ CL_PRODUCT_CPA2008 :'data.frame':    616 obs. of  2 variables:
 $ CL_SECTOR          :'data.frame':    213 obs. of  2 variables:
 $ CL_TRANSFORMATION  :'data.frame':    59 obs. of  2 variables:
 $ CL_UNIT_MEASURE    :'data.frame':    867 obs. of  2 variables:
 $ CL_CHAPTER         :'data.frame':    11 obs. of  2 variables:
 $ CL_CONSOLIDAT      :'data.frame':    7 obs. of  2 variables:
 $ CL_INSTR_ASSET     :'data.frame':    184 obs. of  2 variables:
 $ CL_MATURITY        :'data.frame':    70 obs. of  2 variables:
 $ CL_MEASURE_NA_DASH :'data.frame':    224 obs. of  2 variables:
 $ CL_PENS_FUNDTYPE   :'data.frame':    23 obs. of  2 variables:
 $ CL_TABLEID         :'data.frame':    80 obs. of  2 variables:
 $ CL_TRANSACTION     :'data.frame':    308 obs. of  2 variables:
 $ CL_VALUATION       :'data.frame':    19 obs. of  2 variables:
 $ CL_CONF_STATUS     :'data.frame':    11 obs. of  2 variables:
 $ CL_DECIMALS        :'data.frame':    16 obs. of  2 variables:
 $ CL_FREQ            :'data.frame':    34 obs. of  2 variables:
 $ CL_OBS_STATUS      :'data.frame':    20 obs. of  4 variables:
 $ CL_UNIT_MULT       :'data.frame':    31 obs. of  4 variables:
names(data_structure$CL_MEASURE_NA_DASH) <- c("measure", "measure_lbl")
names(data_structure$CL_UNIT_MEASURE) <- c("unit_measure", "unit_measure_lbl")

df <- df |>
  merge(data_structure$CL_MEASURE_NA_DASH, by = "measure") |>
  merge(data_structure$CL_UNIT_MEASURE, by = "unit_measure")

head(df)
  unit_measure   measure ref_area time_period obsvalue
1           PC B1GQ_R_GR       EU        1996 1.762022
2           PC B1GQ_R_GR       EU        1997 2.658910
3           PC B1GQ_R_GR       EU        1998 3.003871
4           PC B1GQ_R_GR       EU        1999 2.949903
5           PC B1GQ_R_GR       EU        2000 3.864365
6           PC B1GQ_R_GR       EU        2001 2.133439
                              measure_lbl  unit_measure_lbl
1 Real gross domestic product growth rate Percentage change
2 Real gross domestic product growth rate Percentage change
3 Real gross domestic product growth rate Percentage change
4 Real gross domestic product growth rate Percentage change
5 Real gross domestic product growth rate Percentage change
6 Real gross domestic product growth rate Percentage change

The get_data_structure function returns a list of dataframes with human-readable values for variable names and values. The first data frame contains the variable names and shows the dimensions of a dataset:

data_structure$VAR_DESC
                   id                      description
1                FREQ         Frequency of observation
2            REF_AREA                   Reference area
3             MEASURE                          Measure
4         EXPENDITURE                      Expenditure
5            ACTIVITY                Economic activity
6        UNIT_MEASURE                  Unit of measure
7             CHAPTER                          Chapter
8         TIME_PERIOD                      Time period
9           OBS_VALUE                Observation value
10         ADJUSTMENT                       Adjustment
11   COUNTERPART_AREA                 Counterpart area
12             SECTOR             Institutional sector
13 COUNTERPART_SECTOR Counterpart institutional sector
14      CONSOLIDATION             Consolidation status
15   ACCOUNTING_ENTRY                 Accounting entry
16        TRANSACTION                      Transaction
17        INSTR_ASSET           Instruments and assets
18           MATURITY   Original and residual maturity
19            PRODUCT                          Product
20   PENSION_FUNDTYPE                Pension fund type
21     CURRENCY_DENOM         Currency of denomination
22          VALUATION                        Valuation
23         PRICE_BASE                       Price base
24     TRANSFORMATION                   Transformation
25   TABLE_IDENTIFIER                 Table identifier
26     REF_YEAR_PRICE             Price reference year
27           BASE_PER                      Base period
28        CONF_STATUS           Confidentiality status
29           DECIMALS                         Decimals
30         OBS_STATUS               Observation status
31          UNIT_MULT                  Unit multiplier
32           CURRENCY                         Currency

Other information

This package is in no way officially related to or endorsed by the OECD.

About

Reproducible and programmatic access to OECD data

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages