Skip to content

farzana-zaki/Biofilm-texture-analysis

Repository files navigation

Texture Analysis of Bacterial Biofilms using Supervised Machine Learning

Abstract:

Otitis media (OM) is primarily a bacterial middle-ear infection prevalent among children worldwide. In recurrent and/or chronic OM cases, antibiotic-resistant bacterial biofilms can develop in the middle ear. A biofilm related to OM typically contains one or multiple bacterial species, the most common include Haemophilus influenzae, Streptococcus pneumoniae, Moraxella catarrhalis, Pseudomonas aeruginosa, and Staphylococcus aureus. Optical coherence tomography (OCT) has been used clinically to visualize the presence of bacterial biofilms in the middle ear. This study used OCT to compare microstructural image texture features from primary bacterial biofilms in vitro and in vivo. The proposed method applied supervised machine-learning-based frameworks (SVM, random forest, and XGBoost) to classify and speciate multiple species bacterial biofilms from the texture features extracted from OCT B-Scan images obtained from in vitro cultures and from clinically-obtained in vivo images from human subjects. Our findings show that optimized SVM-RBF and XGBoost classifiers can help distinguish bacterial biofilms by incorporating clinical knowledge into classification decisions. Furthermore, both classifiers achieved more than 95% of AUC, detecting each biofilm class. These results demonstrate the potential for differentiating OM-causing bacterial biofilms through texture analysis of OCT images and a machine-learning framework, which could provide additional clinically relevant data during real-time in vivo characterization of ear infections.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published